7 resultados para Highest good

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Healthy and Biologically Diverse Seas Evidence Group (HBDSEG) has been tasked with providing the technical advice for the implementation of the Marine Strategy Framework Directive (MSFD) with respect to descriptors linked to biodiversity. A workshop was held in London to address one of the Research and Development (R&D) proposals entitled: ‘Mapping the extent and distribution of habitats using acoustic and remote techniques, relevant to indicators for area/extent/habitat loss.’ The aim of the workshop was to identify, define and assess the feasibility of potential indicators of benthic habitat distribution and extent, and identify the R&D work which could be required to fully develop these indicators. The main points that came out of the workshop were: (i) There are many technical aspects of marine habitat mapping that still need to be resolved if cost-effective spatial indicators are to be developed. Many of the technical aspects that need addressing surround issues of consistency, confidence and repeatability. These areas should be tackled by the JNCC Habitat Mapping and Classification Working Group and the HBDSEG Seabed Mapping Working Group. (ii) There is a need for benthic ecologists (through the HBDSEG Benthic Habitats Subgroup and the JNCC Marine Indicators Group) to finalise the list of habitats for which extent and/or distribution indicators should be considered for development, building upon the recommendations from this report. When reviewing the list of indicators, benthic habitats could also be distinguished into those habitats that are defined/determined primarily by physical parameters (although including biological assemblages) (e.g. subtidal shallow sand) and those defined primarily by their biological assemblage (e.g. seagrass beds). This distinction is important as some anthropogenic pressures may influence the biological component of the ecosystem despite not having a quantifiable effect on the physical habitat distribution/extent. (iii) The scale and variety of UK benthic habitats makes any attempt to undertake comprehensive direct mapping exercises prohibitively expensive (especially where there is a need for repeat surveys for assessment). There is a clear need therefore to develop a risk-based approach that uses indirect indicators (e.g. modelling), such as habitats at risk from pressures caused by current human activities, to develop priorities for information gathering. The next steps that came out of the workshop were: (i) A combined approach should be developed by the JNCC Marine Indicators Group together with the HBDSEG Benthic Habitats Subgroup, which will compile and ultimately synthesise all the criteria used by the three different groups from the workshop. The agreed combined approach will be used to undertake a final review of the habitats considered during the workshop, and to evaluate any remaining habitats in order to produce a list of habitats for indicator development for which extent and/or distribution indicators could be appropriate. (ii) The points of advice raised at this workshop, alongside the combined approach aforementioned, and the final list of habitats for extent and/or distribution indicator development will be used to develop a prioritised list of actions to inform the next round of R&D proposals for benthic habitat indicator development in 2014. This will be done through technical discussions within JNCC and the relevant HBDSEG Subgroups. The preparation of recommendations by these groups should take into account existing work programmes, and consider the limited resources available to undertake any further R&D work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We augment discussions about the Good Environmental Status of the North Sea by developing two extreme visions and assessing their societal benefits. One vision (‘Then’) assumes restoration of benthic functioning; we contend that trawling had already degraded the southern North Sea a century ago. Available information is used to speculate about benthic functioning in a relatively undisturbed southern North Sea. The second vision (‘Now’) draws on recent benthic functioning. The supply of five ecosystem services, supported by benthic functioning, is discussed. ‘Then’ offers confidence in the sustainable supply of diverse services but restoration of past function is uncertain and likely to be paired with costs, notably trawling restraints. ‘Now’ delivers known and valued services but sustained delivery is threatened by, for example, climate change. We do not advocate either vision. Our purpose is to stimulate debate about what society wants, and might receive, from the future southern North Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.