4 resultados para Heat waves

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic changes to climate and extreme weather events have already led to the introduction of non-native species (NNS) to the North Atlantic. Regional climate models predict that there will be a continuation of the current trend of warming throughout the 21st century providing enhanced opportunities for NNS at each stage of the invasion process. Increasing evidence is now available to show that climate change has led to the northwards range expansion of a number of NNS in the UK and Ireland, such as the Asian club tunicate Styela clava and the Pacific oyster Crassostrea gigas. Providing definitive evidence though of the direct linkage between climate change and the spread of the majority of NNS is extremely challenging, due to other confounding factors, such as anthropogenic activity. Localised patterns of water movement and food supply may also be complicating the overall pattern of northwards range expansion, by preventing the expansion of some NNS, such as the slipper limpet Crepidula fornicata and the Chilean oyster Ostrea chilensis, from a particular region. A greater understanding of the other aspects of climate change and increased atmospheric CO2, such as increased rainfall, heat waves, frequency of storm events, and ocean acidification may aid in increasing the confidence that scientists have in predicting the long term influence of climate change on the introduction, spread and establishment of NNS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.