15 resultados para HEAT LOADS
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This survey on calorimetry and thermodynamics of anoxibiosis applies classical and irreversible thermodynamics to interpret experimental, direct calorimetric results in order to elucidate the sequential activation of various biochemical pathways. First, the concept of direct and indirect calorimetry is expanded to incorporate the thermochemistry of aerobic and anoxic metabolism in living cells and organisms. Calorimetric studies done under normoxia as well as under physiological and environmental anoxia are presented and assessed in terms of ATP turnover rate. Present evidence suggests that unknown sources of energy in freshwater and marine invertebrates under long-term anoxia may be important. During physiological hypoxia, thermodynamically grossly inefficient pathways sustain high metabolic rates for brief periods. On the contrary, under long-term environmental anoxia, low steady-state heat dissipation is linked to the more efficient succinate, propionate, and acetate pathways. In the second part of this paper these relationships are discussed in the context of linear, irreversible thermodynamics. The calorimetric and biochemical trends during aerobic-anoxic transitions are consistent with thermodynamic optimum functions of catabolic pathways. The theory predicts a decrease of rate with an increase of thermodynamic efficiency; therefore maximum rate and maximum efficiency are mutually exclusive. Cellular changes of pH and adenylate phosphorylation potential are recognized as regulatory mechanisms in the energetic switching to propionate production. While enzyme kinetics provides one key for understanding metabolic regulation, our insight remains incomplete without a complementary thermodynamic analysis of kinetic control in energetically coupled pathways.
Spectral Response Of A Model Of The English-Channel And Southern North-Sea Heat Budgets 1961 To 1976
Resumo:
Comprehensive, aggregate nutrient budgets were established for two compartments of the North Sea, the shallow coastal and deeper open regions, and for three different periods, representing pre-eutrophication (∼1950), eutrophication (∼1990) and contemporary (∼2000) phases. The aim was to quantify the major budget components, to identify their sources of variability, to specify the anthropogenic components, and to draw implications for past and future policy. For all three periods, open North Sea budgets were dominated (75%) by fluxes from and to the North-East Atlantic; sediment exchange was of secondary importance (18%). For the coastal North Sea, fluxes during the eutrophication period were dominated by sediment exchange (49% of all inputs), followed by exchange with the open sea (21%), and anthropogenic inputs (19%). Between 1950 and 1990, N-loading of coastal waters increased by a factor of 1.62 and P-loading by 1.45. These loads declined after 1990. Interannual variability in Atlantic inflow was found to correspond to a variability of 11% in nutrient load to the open North Sea. Area-specific external loads of both the open and coastal North Sea were below Vollenweider-type critical loads when expressed relative to depth and flushing. External area-specific load of the coastal North Sea has declined since 1990 from 1.8 to about 1.4 g P m−2 y−1 in 2000, which is close to the estimate of 1.3 for 1950. N-load declined less, leading to an increase in N/P ratio.
Resumo:
Changes in the net heat flux (NHF) into the ocean have profound impacts on global climate. We analyse a long-term plankton time-series and show that the NHF is a critical indicator of ecosystem dynamics. We show that phytoplankton abundance and diversity patterns are tightly bounded by the switches between negative and positive NHF over an annual cycle. Zooplankton increase before the transition to positive NHF in the spring but are constrained by the negative NHF switch in autumn. By contrast bacterial diversity is decoupled from either NHF switch, but is inversely correlated (r=-0.920) with the magnitude of the NHF. We show that the NHF is a robust mechanistic tool for predicting climate change indicators such as spring phytoplankton bloom timing and length of the growing season.
Resumo:
Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future.
Resumo:
The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.