2 resultados para Guilds
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Many food webs are so complex that it is difficult to distinguish the relationships between predators and their prey. We have therefore developed an approach that produces a food web which clearly demonstrates the strengths of the relationships between the predator guilds of demersal fish and their prey guilds in a coastal ecosystem. Subjecting volumetric dietary data for 35 abundant predators along the lower western Australia coast to cluster analysis and the SIMPROF routine separated the various species x length class combinations into 14 discrete predator guilds. Following nMDS ordination, the sequence of points for these predator guilds represented a 'trophic' hierarchy. This demonstrated that, with increasing body size, several species progressed upwards through this hierarchy, reflecting a marked change in diet, whereas others remained within the same guild. A novel use of cluster analysis and SIMPROF then identified each group of prey that was ingested in a common pattern across the full suite of predator guilds. This produced 12 discrete groups of taxa (prey guilds) that each typically comprised similar ecological/functional prey, which were then also aligned in a hierarchy. The hierarchical arrangements of the predator and prey guilds were plotted against each other to show the percentage contribution of each prey guild to the diet of each predator guild. The resultant shade plot demonstrates quantitatively how food resources are spread among the fish species and revealed that two prey guilds, one containing cephalopods and teleosts and the other small benthic/epibenthic crustaceans and polychaetes, were consumed by all predator guilds.
Resumo:
In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.