3 resultados para Gravure physico-chimique
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
There has been much debate on the extent to which resource availability (bottom-up) versus predation pressure from fish (top-down) modulates the dynamics of plankton in marine systems. Physico/chemical bottom-up forcing has been considered to be the main mechanism structuring marine ecosystems, although some field observations and empirical correlations support top-down modulation. Models have indicated possible feedback loops to the plankton and other studies have interpreted a grazing impact from long-term changes in fish stocks. In freshwater systems, evidence for top-down forcing by fish and trophic cascading is well documented. First, evidence for equivalent top-down effects in the marine environment is presented, with an overview of relevant publications. In the second part, time series, averaged for the North Sea (when possible from 1948 to 1997), of fish catch, recruitment, and spawning stock biomass are related to the abundance of species or larger groupings of zooplankton and phytoplankton from the Continuous Plankton Recorder survey and selected environmental parameters. Preliminary analysis suggests that there is strong interaction between different fish species and the plankton and that the fishery, through top-down control, may at times be an important contributor to changes in the North Sea ecosystem.
Resumo:
During summer 2008 and spring 2009, surface oceanographic surveys were carried out around three islands of the Azores archipelago (Terceira, Sao Miguel and Santa Maria) to assess the phytoplankton distribution and associated physico-chemical processes. The Azores archipelago is a major feature in the biogeochemical North Atlantic Subtropical Gyre (NAST) province although its influence on the productivity of the surrounding ocean is poorly known. Surface phytoplankton was studied by microscopy and HPLC (High Precision Liquid Chromatography). The mean values for biomass proxy Chlorophyll a (Chla) ranged from 0.04 to 0.55 mu g L-1 (Chla maximum = 0.86 mu g L-1) and coccolithophores were the most abundant group, followed by small flagellates, Cyanobacteria, diatoms and dinoflagellates being the least abundant group. The distribution of phytoplankton and coccolithophore species in particular presented seasonal differences and was consistent with the nearshore influence of warm subtropical waters from the south Azores current and colder subpolar waters from the north. The satellite-derived circulation patterns showed southward cold water intrusions off Terceira and northward warm water intrusions off Santa Maria. The warmer waters signal was confirmed by the subtropical coccolithophore assemblage, being Discosphaera tubifera a constant presence under these conditions. The regions of enhanced biomass, either resulting from northern cooler waters or from island induced processes, were characterized by the presence of Emiliania huxleyi. Diatoms and dinoflagellates indicated coastal and regional processes of nutrient enrichment and areas of physical stability, respectively.
Resumo:
Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.