34 resultados para Global temperature changes.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Evidence of global warming is now unequivocal, and studies suggest that it has started to influence natural systems of the planet, including the oceans. However, in the marine environment, it is well-known that species and ecosystems can also be influenced by natural sources of large-scale hydro-climatological variability. The North Atlantic Oscillation (NAO) was negatively correlated with the mean abundance of one of the subarctic key species Calanus finmarchicus in the North Sea. This correlation was thought to have broken down in 1996, however, the timing has never been tested statistically. The present study revisits this unanticipated change and reveals that the correlation did not break down in 1996 as originally proposed but earlier, at the time of an abrupt ecosystem shift in the North Sea in the 1980s. Furthermore, the analyses demonstrate that the correlation between the NAO and C. finmarchicus abundance is modulated by the thermal regime of the North Sea, which in turn covaries positively with global temperature anomalies. This study thereby provides evidence that global climate change is likely to alter some empirical relationships found in the past between species abundance or the ecosystem state and large-scale natural sources of hydro-climatological variability. A theory is proposed to explain how this might happen. These unanticipated changes, also called ‘surprises’ in climatic research, are a direct consequence of the complexity of both climatic and biological systems. In this period of rapid climate change, it is therefore hazardous to integrate meteo-oceanic indices such as the NAO in models used in the management of living resources, as it has been sometimes attempted in the past.
Resumo:
Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Resumo:
Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.
Resumo:
Large-scale biogeographical changes in the biodiversity of a key zooplankton group (calanoid copepods) were detected in the north-eastern part of the North Atlantic Ocean and its adjacent seas over the period 1960–1999. These findings provided key empirical evidence for climate change impacts on marine ecosystems at the regional to oceanic scale. Since 1999, global temperatures have continued to rise in the region. Here, we extend the analysis to the period 1958–2005 using all calanoid copepod species assemblages (nine species assemblages based on an analysis including a total of 108 calanoid species or taxa) and show that this phenomenon has been reinforced in all regions. Our study reveals that the biodiversity of calanoid copepods are responding quickly to sea surface temperature (SST) rise by moving geographically northward at a rapid rate up to about 23.16 km yr−1. Our analysis suggests that nearly half of the increase in sea temperature in the northeast Atlantic and adjacent seas is related to global temperature rises (46.35% of the total variance of temperature) while changes in both natural modes of atmospheric and oceanic circulation explain 26.45% of the total variance of temperature. Although some SST isotherms have moved northwards by an average rate of up to 21.75 km yr−1 (e.g. the North Sea), their movement cannot fully quantify all species assemblage shifts. Furthermore, the observed rates of biogeographical movements are far greater than those observed in the terrestrial realm. Here, we discuss the processes that may explain such a discrepancy and suggest that the differences are mainly explained by the fluid nature of the pelagic domain, the life cycle of the zooplankton and the lesser anthropogenic influence (e.g. exploitation, habitat fragmentation) on these organisms. We also hypothesize that despite changes in the path and intensity of the oceanic currents that may modify quickly and greatly pelagic zooplankton species, these organisms may reflect better the current impact of climate warming on ecosystems as terrestrial organisms are likely to significantly lag the current impact of climate change.
Resumo:
Climate change is unambiguous and its effects are clearly detected in all functional units of the Earth system. This study presents new analyses of sea-surface temperature changes and show that climate change is affecting ecosystems of the North Atlantic. Changes are seen from phytoplankton to zooplankton to fish and are modifying the dominance of species and the structure, the diversity and the functioning of marine ecosystems. Changes also range from phenological to biogeographical shifts and have involved in some regions of the Atlantic abrupt ecosystem shifts. These alterations reflect a response of pelagic ecosystems to a warmer temperature regime. Mechanisms are complex because they are nonlinear exhibiting tipping points and varying in space and time. Sensitivity of organisms to temperature changes is high, implicating that a small temperature modification can have sustained ecosystem effects. Implications of these changes for biogeochemical cycles are discussed. Two observed changes detected in the North Sea that could have opposite effects on carbon cycle are discussed. Increase in phytoplankton, as inferred from the phytoplankton colour index derived from the Continuous Plankton Recorder (CPR) survey, has been detected in the North Sea. This pattern has been accompanied by a reduction in the abundance of the herbivorous species Calanus finmarchicus. This might have reduced the grazing pressure and increase diatomaceous ‘fluff’, therefore carbon export in the North Sea. Therefore, it could be argued that the biological carbon pump might increase in this region with sea warming. In the meantime, however, the mean size of organisms (calanoid copepods) has dropped. Such changes have implications for the turnover time of biogenic carbon in plankton organisms and the mean residence time of particulate carbon they produce. The system characterising the warmer period is more based on recycling and less on export. The increase in the minimum turnover time indicates an increase in the ecosystem metabolism, which can be considered as a response of the pelagic ecosystems to climate warming. This phenomenon could reduce carbon export. These two opposite patterns of change are examples of the diversity of mechanisms and pathways the ecosystems may exhibit with climate change. Oversimplification of current biogeochemical models, often due to lack of data and biological understanding, could lead to wrong projection on the direction ecosystems and therefore some biogeochemical cycles might take in a warmer world.
Resumo:
Copepods represent the major part of the dry weight of the mesozooplankton in pelagic ecosystems and therefore have a central role in the secondary production of the North Atlantic Ocean. The calanoid copepod species Calanus finmarchicus is the main large copepod in subarctic waters of the North Atlantic, dominating the dry weight of the mesozooplankton in regions such as the northern North Sea and the Norwegian Sea. The objective of this work was to investigate the relationships between both the fundamental and realised niches of C. finmarchicus in order to better understand the future influence of global climate change on the abundance, the spatial distribution and the phenology of this key-structural species. Based on standardised Principal Component Analyses (PCAs), a macroecological approach was applied to determine factors affecting the spatial distribution of C. finmarchicus and to characterise its realised niche. Second, an ecophysiological model was used to calculate the Potential Egg Production Rate (PEPR) of C. finmarchicus and the centre of its fundamental niche. Relationships between the two niches were then investigated by correlation analysis. We found a close relationship between the fundamental and realised niches of C. finmarchicus at spatial, monthly and decadal scales. While the species is at the centre of its niche in the subarctic gyre, our joint macroecological and macrophysiological analyses show that it is at the edge of its niche in the North Sea, making the species in this region more vulnerable to temperature changes.
Resumo:
In the near future, the marine environment is likely to be subjected to simultaneous increases in temperature and decreased pH. The potential effects of these changes on intertidal, meiofaunal assemblages were investigated using a mesocosm experiment. Artificial Substrate Units containing meiofauna from the extreme low intertidal zone were exposed for 60 days to eight experimental treatments (four replicates for each treatment) comprising four pH levels: 8.0 (ambient control), 7.7 & 7.3 (predicted changes associated with ocean acidification), and 6.7 (CO2 point-source leakage from geological storage), crossed with two temperatures: 12 °C (ambient control) and 16 °C (predicted). Community structure, measured using major meiofauna taxa was significantly affected by pH and temperature. Copepods and copepodites showed the greatest decline in abundance in response to low pH and elevated temperature. Nematodes increased in abundance in response to low pH and temperature rise, possibly caused by decreased predation and competition for food owing to the declining macrofauna density. Nematode species composition changed significantly between the different treatments, and was affected by both seawater acidification and warming. Estimated nematode species diversity, species evenness, and the maturity index, were substantially lower at 16 °C, whereas trophic diversity was slightly higher at 16 °C except at pH 6.7. This study has demonstrated that the combination of elevated levels of CO2 and ocean warming may have substantial effects on structural and functional characteristics of meiofaunal and nematode communities, and that single stressor experiments are unlikely to encompass the complexity of abiotic and biotic interactions. At the same time, ecological interactions may lead to complex community responses to pH and temperature changes in the interstitial environment
Resumo:
The atmosphere and ocean are two components of the Earth system that are essential for life, yet humankind is altering both. Contemporary climate change is now a well-identified problem: anthropogenic causes, disturbance in extreme events patterns, gradual environmental changes, widespread impacts on life and natural resources, and multiple threats to human societies all around the world. But part of the problem remains largely unknown outside the scientific community: significant changes are also occurring in the ocean, threatening life and its sustainability on Earth. This Policy Brief explains the significance of these changes in the ocean. It is based on a scientific paper recently published in Science (Gattuso et al., 2015), which synthesizes recent and future changes to the ocean and its ecosystems, as well as to the goods and services they provide to humans. Two contrasting CO2 emission scenarios are considered: the high emissions scenario (also known as “business-as-usual” and as the Representative Concentration Pathway 8.5, RCP8.5) and a stringent emissions scenario (RCP2.6) consistent with the Copenhagen Accord1 of keeping mean global temperature increase below 2°C in 2100.
Resumo:
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
Resumo:
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
Resumo:
A marked increase in global temperature over the last century was confirmed by the second Assessment Report of the Intergovernmental Panel on Climate Change. Here we report significant positive and negative linear trends from 1948 to 1995 in phytoplankton measured by the Continuous Plankton Recorder survey in the northeast Atlantic and North Sea that might reflect a response to changing climate on a timescale of decades. Spreading of unusually cold waters from the Arctic might have contributed to the decline in phytoplankton north of 59o N. Further south, phytoplankton season length and abundance seem to have increased.