14 resultados para Global environmental change -- Health aspects
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Modeling of global climate change is moving from global circulation model (GCM)-type projections with coupled biogeochemical models to projections of ecological responses, including food web and upper trophic levels. Marine and coastal ecosystems are highly susceptible to the impacts of global climate change and also produce significant ecosystem services. The effects of global climate change on coastal and marine ecosystems involve a much wider array of effects than the usual temperature, sea level rise, and precipitation. This paper is an overview for a collection of 12 papers that examined various aspects of global climate change on marine ecosystems and comprise this special issue. We summarized the major features of the models and analyses in the papers to determine general patterns. A wide range of ecosystems were simulated using a diverse set of modeling approaches. Models were either 3-dimensional or used a few spatial boxes, and responses to global climate change were mostly expressed as changes from a baseline condition. Three issues were identified from the across-model comparison: (a) lack of standardization of climate change scenarios, (b) the prevalence of site-specific and even unique models for upper trophic levels, and (c) emphasis on hypothesis evaluation versus forecasting. We discuss why these issues are important as global climate change assessment continues to progress up the food chain, and, when possible, offer some initial steps for going forward.
Resumo:
The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national Gross Domestic Product (GDP) and 22.8% of agriculture sector production, and supplying ca.60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here we develop and apply tools to project the long term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca.11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh Exclusive Economic Zone (EEZ) by less than 10%. However, these impacts are larger for the two target species. Under sustainable management practices we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed catches are projected to fall much further, by almost 95% by 2060, compared to the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of less than 20% compared to current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.
Resumo:
The Continuous Plankton Recorder (CPR) survey was conceived from the outset as a programme of applied research designed to assist the fishing industry. Its survival and continuing vigour after 70 years is a testament to its utility, which has been achieved in spite of great changes in our understanding of the marine environment and in our concerns over how to manage it. The CPR has been superseded in several respects by other technologies, such as acoustics and remote sensing, but it continues to provide unrivalled seasonal and geographic information about a wide range of zooplankton and phytoplankton taxa. The value of this coverage increases with time and provides the basis for placing recent observations into the context of long-term, large-scale variability and thus suggesting what the causes are likely to be. Information from the CPR is used extensively in judging environmental impacts and producing quality status reports (QSR); it has shown the distributions of fish stocks, which had not previously been exploited; it has pointed to the extent of ungrazed phytoplankton production in the North Atlantic, which was a vital element in establishing the importance of carbon sequestration by phytoplankton. The CPR continues to be the principal source of large-scale, long-term information about the plankton ecosystem of the North Atlantic. It has recently provided extensive information about the biodiversity of the plankton and about the distribution of introduced species. It serves as a valuable example for the design of future monitoring of the marine environment and it has been essential to the design and implementation of most North Atlantic plankton research.
Resumo:
Top predators, particularly seabirds, have repeatedly been suggested as indicators of marine ecosystem status. One region currently under pressure from human fisheries and climate change is the North Sea. Standardized seabird monitoring data have been collected on the Isle of May, an important seabird colony in the northwestern North Sea, over the last 10–20 years. Over this period oceanographic conditions have varied markedly, and between 1990 and 1999 a major industrial fishery for sandlance (Ammodytes marinus), the main prey of most seabird species, was prosecuted nearby. Sandlance fishing grounds close to seabird colonies down the east coast of the UK were closed in 2000 in an attempt to improve foraging opportunities for breeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla). Initially this closure seemed to be beneficial for kittiwakes with breeding success recovering to pre-fishery levels. However, despite the ban continuing, kittiwakes and many other seabird species in the North Sea suffered severe breeding failures in 2004. In this paper, we test the predictive power of four previously established correlations between kittiwake breeding success and climatic/trophic variables to explain the observed breeding success at the Isle of May in 2004. During the breeding season, kittiwakes at this colony switch from feeding on 1+ group to 0 group sandlance, and results up until 2003 indicated that availability of both age classes had a positive effect on kittiwake breeding success. The low breeding success of kittiwakes in 2004 was consistent with the late appearance and small body size of 0 group sandlance, but at odds with the two variables likely to operate via 1 group availability (lagged winter sea surface temperature and larval sandlance cohort strength in 2003). The reason for the discrepancy is currently unknown, but analysis of 1 group sandlance body composition indicated that lipid content in 2004 was extremely low, and thus fish eaten by kittiwakes during pre-breeding and early incubation were likely to be of poor quality. Monitoring of reproductive success of kittiwakes, although useful, was clearly not sufficient to tease apart the complex causation underlying the 2004 event. Monitoring programs such as this, therefore, need to be complemented by detailed research to identify the mechanisms involved, and to attribute and predict the effects of natural and human-induced environmental change.
Resumo:
Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.