11 resultados para Global effect index

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately 500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal cycles in the condition index of Mytilus edulis from three sites in southwest England are described. These are analysed in relation to host length, stage of gonad development and parasite burden by linear regression analysis. An effect on the condition index due to the presence of Mytilicola intestinalis can be detected only in the sublittoral mussels in those few winter months when the mean intensity of infestation is over about 25 parasites per host. In all cases studied, the magnitude of the effect due to variation in host length, stage of gonad development, seasonal cycles and environmental factors is greater than that due to parasitism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed. populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (similar to 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem-based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate-induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report evidences that the zooplankton biomass in the tropical Atlantic has declined with an almost 10-fold drop from the 1950s to 2000. The results of the multiple regression analysis showed that the decline in zooplankton biomass was positively related to the NAO-index and to phosphate concentration. We also found that the depth of the thermocline has decreased over the period of our investigation. Thus, the decline we report in zooplankton biomass may be related to the combined effect of two phenomena driven by global temperature increase: (1) the widening of the distributional range of tropical species due to the expansion of the ‘tropical belt’ and (2) a decrease in primary production resulting from the thinning of the thermocline. The decline of zooplankton biomass we report suggests that global warming of the ocean may be altering tropical food webs, and through them, it may also indirectly impact tropical oceans biogeochemical cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorophyll-a satellite products are routinely used in oceanography, providing a synoptic and global view of phytoplankton abundance. However, these products lack information on the community structure of the phytoplankton, which is crucial for ecological modelling and ecosystem studies. To assess the usefulness of existing methods to differentiate phytoplankton functional types (PFT) or phytoplankton size classes from satellite data, in-situ phytoplankton samples collected in the Western Iberian coast, on the North-East Atlantic, were analysed for pigments and absorption spectra. Water samples were collected in five different locations, four of which were located near the shore and another in an open-ocean, seamount region. Three different modelling approaches for deriving phytoplankton size classes were applied to the in situ data. Approaches tested provide phytoplankton size class information based on the input of pigments data (Brewin et al., 2010), absorption spectra data (Ciotti et al., 2002) or both (Uitz et al., 2008). Following Uitz et al. (2008), results revealed high variability in microphytoplankton chlorophyll-specific absorption coefficients, ranging from 0.01 to 0.09 m2 (mg chl)− 1 between 400 and 500 nm. This spectral analysis suggested, in one of the regions, the existence of small cells (< 20 μm) in the fraction of phytoplankton presumed to be microphytoplankton (based on diagnostic pigments). Ciotti et al. (2002) approach yielded the highest differences between modelled and measured absorption spectra for the locations where samples had high variability in community structure and cell size. The Brewin et al. (2010) pigment-based model was adjusted and a set of model coefficients are presented and recommended for future studies in offshore water of the Western Iberian coast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009 to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10 recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5 model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentration increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predictions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolithophores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more important in the summertime and in the northeast Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.