10 resultados para Global Business Services

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ecosystem-based approaches (EBAs) to managing anthropogenic pressures on ecosystems, adapting to changes in ecosystem states (indicators of ecosystem health), and mitigating the impacts of state changes on ecosystem services are needed for sustainable development. EBAs are informed by integrated ecosystem assessments (IEAs) that must be compiled and updated frequently for EBAs to be effective. Frequently updated IEAs depend on the sustained provision of data and information on pressures, state changes, and impacts of state changes on services. Nowhere is this truer than in the coastal zone, where people and ecosystem services are concentrated and where anthropogenic pressures converge. This study identifies the essential indicator variables required for the sustained provision of frequently updated IEAs, and offers an approach to establishing a global network of coastal observations within the framework of the Global Ocean Observing System. The need for and challenges of capacity-building are highlighted, and examples are given of current programmes that could contribute to the implementation of a coastal ocean observing system of systems on a global scale. This illustrates the need for new approaches to ocean governance that can achieve coordinated integration of existing programmes and technologies as a first step towards this goal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable development depends on maintaining ecosystem services which are concentrated in coastal marine and estuarine ecosystems. Analyses of the science needed to manage human uses of ecosystem services have concentrated on terrestrial ecosystems. Our focus is on the provision of multidisciplinary data needed to inform adaptive, ecosystem-based approaches (EBAs) for maintaining coastal ecosystem services based on comparative ecosystem analyses. Key indicators of pressures on coastal ecosystems, ecosystem states and the impacts of changes in states on services are identified for monitoring and analysis at a global coastal network of sentinel sites nested in the ocean-climate observing system. Biodiversity is targeted as the “master” indicator because of its importance to a broad spectrum of services. Ultimately, successful implementation of EBAs will depend on establishing integrated, holistic approaches to ocean governance that oversee the development of integrated, operational ocean observing systems based on the data and information requirements specified by a broad spectrum of stakeholders for sustainable development. Sustained engagement of such a spectrum of stakeholders on a global scale is not feasible. The global coastal network will need to be customized locally and regionally based on priorities established by stakeholders in their respective regions. The E.U. Marine Strategy Framework Directive and the U.S. Recommendations of the Interagency Ocean Policy Task Force are important examples of emerging regional scale approaches. The effectiveness of these policies will depend on the co-evolution of ocean policy and the observing system under the auspices of integrated ocean governance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of global climate change is moving from global circulation model (GCM)-type projections with coupled biogeochemical models to projections of ecological responses, including food web and upper trophic levels. Marine and coastal ecosystems are highly susceptible to the impacts of global climate change and also produce significant ecosystem services. The effects of global climate change on coastal and marine ecosystems involve a much wider array of effects than the usual temperature, sea level rise, and precipitation. This paper is an overview for a collection of 12 papers that examined various aspects of global climate change on marine ecosystems and comprise this special issue. We summarized the major features of the models and analyses in the papers to determine general patterns. A wide range of ecosystems were simulated using a diverse set of modeling approaches. Models were either 3-dimensional or used a few spatial boxes, and responses to global climate change were mostly expressed as changes from a baseline condition. Three issues were identified from the across-model comparison: (a) lack of standardization of climate change scenarios, (b) the prevalence of site-specific and even unique models for upper trophic levels, and (c) emphasis on hypothesis evaluation versus forecasting. We discuss why these issues are important as global climate change assessment continues to progress up the food chain, and, when possible, offer some initial steps for going forward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oceans have shown a recent rapid and accelerating rise in temperature with, given the close link between temperature and marine organisms, pronounced effects on ecosystems. Here we describe for the first time a globally synchronous pattern of pulsed short period (�1 year long) emanations of warm sea surface temperature anomalies from tropical seas towards the poles on the shelf/slope with an intensification of the warming after the 1976/1977, 1986/1987 and 1997/1998 El Nin˜os. On the eastern margins of continents the anomalies propagate towards the poles in part by largely baroclinic boundary currents, reinforced by regional atmospheric warming. The processes contributing to the less continuous warm anomalies on western margins are linked to the transfer of warmth from adjacent western boundary currents. These climate induced events show a close parallelism with the timing of ecosystem changes in shelf seas, important for fisheries and ecosystem services, and melting of sea-ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that globally declining fisheries catch trends cannot be explained by random processes and are consistent with declining stock abundance trends. Future projections are inherently uncertain but may provide a benchmark against which to assess the effectiveness of conservation measures. Marine reserves and fisheries closures are among those measures and can be equally effective in tropical and temperate areas—but must be combined with catch-, effort-, and gear restrictions to meet global conservation objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbour processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately 500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystems provide a range of goods and services that contribute toward human well-being. It is increasingly recognized that factors such as a growing and increasingly affluent world population, coupled with increased globalization of trade, are significantly influencing the delivery of ecosystem goods and services. This chapter argues that future energy policy must be designed based on a broad set of environmental and social considerations that examine the national and international implications of each energy technology. This approach ensures a more holistic overview of the costs and benefits associated with energy production, allowing society to make more informed choices about their futures, including how their energy is sourced, generated, and delivered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming and its link to the burning of fossil fuels has prompted many governments around the world to set legally binding greenhouse gas reduction targets which are to be partially realised through a stronger reliance on renewable (e.g. wind) and other lower carbon (i.e. natural gas and nuclear) energy commodities. The marine environment will play a key role in hosting or supporting these new energy strategies. However, it is unclear how the construction, operation and eventual decommissioning of these energy systems, and their related infrastructure, will impact the marine environment, the ecosystem services (i.e. cultural, regulating, provisioning and supporting) and in turn the benefits it provides for human well-being. This uncertainty stems from a lack of research that has synthesised into a common currency the various effects of each energy sector on marine ecosystems and the benefits humans derive from it. To address this gap, the present study reviews existing ecosystem impact studies for offshore components of nuclear, offshore wind, offshore gas and offshore oil sectors and translates them into the common language of ecosystem service impacts that can be used to evaluate current policies. The results suggest that differences exist in the way in which energy systems impact ecosystem services, with the nuclear sector having a predominantly negative impact on cultural ecosystem services; oil and gas a predominately negative impact on cultural, provisioning, regulating and supporting ecosystem services; while wind has a mix of impacts on cultural, provisioning and supporting services and an absence of studies for regulating services. This study suggests that information is still missing with regard to the full impact of these energy sectors on specific types of benefits that humans derive from the marine environment and proposes possible areas of targeted research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmosphere and ocean are two components of the Earth system that are essential for life, yet humankind is altering both. Contemporary climate change is now a well-identified problem: anthropogenic causes, disturbance in extreme events patterns, gradual environmental changes, widespread impacts on life and natural resources, and multiple threats to human societies all around the world. But part of the problem remains largely unknown outside the scientific community: significant changes are also occurring in the ocean, threatening life and its sustainability on Earth. This Policy Brief explains the significance of these changes in the ocean. It is based on a scientific paper recently published in Science (Gattuso et al., 2015), which synthesizes recent and future changes to the ocean and its ecosystems, as well as to the goods and services they provide to humans. Two contrasting CO2 emission scenarios are considered: the high emissions scenario (also known as “business-as-usual” and as the Representative Concentration Pathway 8.5, RCP8.5) and a stringent emissions scenario (RCP2.6) consistent with the Copenhagen Accord1 of keeping mean global temperature increase below 2°C in 2100.