4 resultados para Genetic stratigraphic sequences

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human-mediated dispersal interplays with natural processes and complicates understanding of the biogeographical history of species. This is exemplified by two invasive tunicates, Ciona robusta (formerly Ciona intestinalis type A) and C. intestinalis (formerly Ciona intestinalis type B), globally distributed and sympatric in Europe. By gathering new mitochondrial sequences that were merged with published datasets, we analysed genetic patterns in different regions, with a focus on 1) their sympatric range and 2) allopatric populations in N and S America and southern Europe. In the sympatric range, the two species display contrasting genetic diversity patterns, with low polymorphism in C. robusta supporting the prevalent view of its recent introduction. In the E Pacific, several genetic traits support the non-native status of C. robusta. However, in the NE Pacific, this appraisal requires a complex scenario of introduction and should be further examined supported by extensive sampling efforts in the NW Pacific (putative native range). For C. intestinalis, Bayesian analysis suggested a natural amphi-North Atlantic distribution, casting doubt on its non-native status in the NW Atlantic. This study shows that both natural and human-mediated dispersal have influenced genetic patterns at broad scales; this interaction lessens our ability to confidently ascertain native vs. non-native status of populations, particularly of those species that are globally distributed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human-mediated dispersal interplays with natural processes and complicates understanding of the biogeographical history of species. This is exemplified by two invasive tunicates, Ciona robusta (formerly Ciona intestinalis type A) and C. intestinalis (formerly Ciona intestinalis type B), globally distributed and sympatric in Europe. By gathering new mitochondrial sequences that were merged with published datasets, we analysed genetic patterns in different regions, with a focus on 1) their sympatric range and 2) allopatric populations in N and S America and southern Europe. In the sympatric range, the two species display contrasting genetic diversity patterns, with low polymorphism in C. robusta supporting the prevalent view of its recent introduction. In the E Pacific, several genetic traits support the non-native status of C. robusta. However, in the NE Pacific, this appraisal requires a complex scenario of introduction and should be further examined supported by extensive sampling efforts in the NW Pacific (putative native range). For C. intestinalis, Bayesian analysis suggested a natural amphi-North Atlantic distribution, casting doubt on its non-native status in the NW Atlantic. This study shows that both natural and human-mediated dispersal have influenced genetic patterns at broad scales; this interaction lessens our ability to confidently ascertain native vs. non-native status of populations, particularly of those species that are globally distributed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.