6 resultados para Generalized regression neural network

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes of enrichment, concentration and retention are thought to be important for the successful recruitment of small pelagic fish in upwelling areas, but are difficult to measure. In this study, a novel approach is used to examine the role of spatio-temporal oceanographic variability on recruitment success of the Northern Benguela sardine Sardinops sagax. This approach applies a neural network pattern recognition technique, called a self-organising map (SOM), to a seven-year time series of satellite-derived sea level data. The Northern Benguela is characterised by quasi-perennial upwelling of cold, nutrient-rich water and is influenced by intrusions of warm, nutrient-poor Angola Current water from the north. In this paper, these processes are categorised in terms of their influence on recruitment success through the key ocean triad mechanisms of enrichment, concentration and retention. Moderate upwelling is seen as favourable for recruitment, whereas strong upwelling, weak upwelling and Angola Current intrusion appear detrimental to recruitment success. The SOM was used to identify characteristic patterns from sea level difference data and these were interpreted with the aid of sea surface temperature data. We found that the major oceanographic processes of upwelling and Angola Current intrusion dominated these patterns, allowing them to be partitioned into those representing recruitment favourable conditions and those representing adverse conditions for recruitment. A marginally significant relationship was found between the index of sardine recruitment and the frequency of recruitment favourable conditions (r super(2) = 0.61, p = 0.068, n = 6). Because larvae are vulnerable to environmental influences for a period of at least 50 days after spawning, the SOM was then used to identify windows of persistent favourable conditions lasting longer than 50 days, termed recruitment favourable periods (RFPs). The occurrence of RFPs was compared with back-calculated spawning dates for each cohort. Finally, a comparison of RFPs with the time of spawning and the index of recruitment showed that in years where there were 50 or more days of favourable conditions following spawning, good recruitment followed (Mann-Whitney U-test: p = 0.064, n = 6). These results show the value of the SOM technique for describing spatio-temporal variability in oceanographic processes. Variability in these processes appears to be an important factor influencing recruitment in the Northern Benguela sardine, although the available data time series is currently too short to be conclusive. Nonetheless, the analysis of satellite data, using a neural network pattern-recognition approach, provides a useful framework for investigating fisheries recruitment problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AMSR-E satellite data and in-situ data were applied to retrieve sea surface air temperature (Ta) over the Southern Ocean. The in-situ data were obtained from the 24~(th) -26~(th) Chinese Antarctic Expeditions during 2008-2010. First, Ta was used to analyze the relativity with the bright temperature (Tb) from the twelve channels of AMSR-E, and no high relativity was found between Ta and Tb from any of the channels. The highest relativity was 0.38 (with 23.8 GHz). The dataset for the modeling was obtained by using in-situ data to match up with Tb, and two methods were applied to build the retrieval model. In multi-parameters regression method, the Tbs from 12 channels were used to the model and the region was divided into two parts according to the latitude of 50°S. The retrieval results were compared with the in-situ data. The Root Mean Square Error (RMS) and relativity of high latitude zone were 0.96℃and 0.93, respectively. And those of low latitude zone were 1.29 ℃ and 0.96, respectively. Artificial neural network (ANN) method was applied to retrieve Ta.The RMS and relativity were 1.26 ℃ and 0.98, respectively.