7 resultados para Generalized Symmetrical Components
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.
Resumo:
The development of population models able to reproduce the dynamics of zooplankton is a central issue when trying to understand how a changing environment would affect zooplankton in the future. Using 10 years of monthly data on phytoplankton and zooplankton abundance in the Bay of Biscay from the IEO's RADIALES time-series programme, we built non-parametric Generalized Additive Models (GAMs) able to reproduce the dynamics of plankton on the basis of environmental factors (nutrients, temperature, upwelling and photoperiod). We found that the interaction between these two plankton components is approximately linear, whereas the effects of environmental factors are non-linear. With the inclusion of the environmental variability, the main seasonal and inter-annual dynamic patterns observed within the studied plankton assemblage indicate the prevalence of bottom-up regulatory control. The statistically deduced models were used to simulate the dynamics of the phytoplankton and zooplankton. A good agreement between observations and simulations was obtained, especially for zooplankton. We are presently developing spatio-temporal GAM models for the North Sea based on the Continuous Plankton Recorder database.