7 resultados para General allocation model
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
In this paper we clearly demonstrate that changes in oceanic nutrients are a first order factor in determining changes in the primary production of the northwest European continental shelf on time scales of 5–10 yr. We present a series of coupled hydrodynamic ecosystem modelling simulations, using the POLCOMS-ERSEM system. These are forced by both reanalysis data and a single example of a coupled ocean-atmosphere general circulation model (OA-GCM) representative of possible conditions in 2080–2100 under an SRES A1B emissions scenario, along with the corresponding present day control. The OA-GCM forced simulations show a substantial reduction in surface nutrients in the open-ocean regions of the model domain, comparing future and present day time-slices. This arises from a large increase in oceanic stratification. Tracer transport experiments identify a substantial fraction of on-shelf water originates from the open-ocean region to the south of the domain, where this increase is largest, and indeed the on-shelf nutrient and primary production are reduced as this water is transported on-shelf. This relationship is confirmed quantitatively by comparing changes in winter nitrate with total annual nitrate uptake. The reduction in primary production by the reduced nutrient transport is mitigated by on-shelf processes relating to temperature, stratification (length of growing season) and recycling. Regions less exposed to ocean-shelf exchange in this model (Celtic Sea, Irish Sea, English Channel, and Southern North Sea) show a modest increase in primary production (of 5–10%) compared with a decrease of 0–20% in the outer shelf, Central and Northern North Sea. These findings are backed up by a boundary condition perturbation experiment and a simple mixing model.
Resumo:
The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.
Resumo:
Ocean biogeochemistry (OBGC) models span a wide variety of complexities, including highly simplified nutrient-restoring schemes, nutrient–phytoplankton–zooplankton–detritus (NPZD) models that crudely represent the marine biota, models that represent a broader trophic structure by grouping organisms as plankton functional types (PFTs) based on their biogeochemical role (dynamic green ocean models) and ecosystem models that group organisms by ecological function and trait. OBGC models are now integral components of Earth system models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here we present an intercomparison of six OBGC models that were candidates for implementation within the next UK Earth system model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the ocean general circulation model Nucleus for European Modelling of the Ocean (NEMO) and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform all other models across all metrics. Nonetheless, the simpler models are broadly closer to observations across a number of fields and thus offer a high-efficiency option for ESMs that prioritise high-resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low-resolution climate dynamics and high-complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry–climate interactions.
Resumo:
Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.
Resumo:
The accuracy of two satellite models of marine primary (PP) and new production (NP) were assessed against 14C and 15N uptake measurements taken during six research cruises in the northern North Atlantic. The wavelength resolving model (WRM) was more accurate than the Vertical General Production Model (VGPM) for computation of both PP and NP. Mean monthly satellite maps of PP and NP for both models were generated from 1997 to 2010 using SeaWiFS data for the Irminger basin and North Atlantic. Intra- and inter-annual variability of the two models was compared in six hydrographic zones. Both models exhibited similar spatio-temporal patterns: PP and NP increased from April to June and decreased by August. Higher values were associated with the East Greenland Current (EGC), Iceland Basin (ICB) and the Reykjanes Ridge (RKR) and lower values occurred in the Central Irminger Current (CIC), North Irminger Current (NIC) and Southern Irminger Current (SIC). The annual PP and NP over the SeaWiFS record was 258 and 82 gC m-2 yr-1 respectively for the VGPM and 190 and 41 gC m-2 yr-1 for the WRM. Average annual cumulative sum in the anomalies of NP for the VGPM were positively correlated with the North Atlantic Oscillation (NAO) in the EGC, CIC and SIC and negatively correlated with the multivariate ENSO index (MEI) in the ICB. By contrast, cumulative sum of the anomalies of NP for the WRM were significantly correlated with NAO only in the EGC and CIC. NP from both VGPM and WRM exhibited significant negative correlations with Arctic Oscillation (AO) in all hydrographic zones. The differences in estimates of PP and NP in these hydrographic zones arise principally from the parameterisation of the euphotic depth and the SST dependence of photo-physiological term in the VGPM, which has a greater sensitivity to variations in temperature than the WRM. In waters of 0 to 5C PP using the VGPM was 43% higher than WRM, from 5 to 10C the VGPM was 29% higher and from 10 to 15C the VGPM was 27% higher.
Resumo:
The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.
Resumo:
The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.