7 resultados para GeST windows
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Processes of enrichment, concentration and retention are thought to be important for the successful recruitment of small pelagic fish in upwelling areas, but are difficult to measure. In this study, a novel approach is used to examine the role of spatio-temporal oceanographic variability on recruitment success of the Northern Benguela sardine Sardinops sagax. This approach applies a neural network pattern recognition technique, called a self-organising map (SOM), to a seven-year time series of satellite-derived sea level data. The Northern Benguela is characterised by quasi-perennial upwelling of cold, nutrient-rich water and is influenced by intrusions of warm, nutrient-poor Angola Current water from the north. In this paper, these processes are categorised in terms of their influence on recruitment success through the key ocean triad mechanisms of enrichment, concentration and retention. Moderate upwelling is seen as favourable for recruitment, whereas strong upwelling, weak upwelling and Angola Current intrusion appear detrimental to recruitment success. The SOM was used to identify characteristic patterns from sea level difference data and these were interpreted with the aid of sea surface temperature data. We found that the major oceanographic processes of upwelling and Angola Current intrusion dominated these patterns, allowing them to be partitioned into those representing recruitment favourable conditions and those representing adverse conditions for recruitment. A marginally significant relationship was found between the index of sardine recruitment and the frequency of recruitment favourable conditions (r super(2) = 0.61, p = 0.068, n = 6). Because larvae are vulnerable to environmental influences for a period of at least 50 days after spawning, the SOM was then used to identify windows of persistent favourable conditions lasting longer than 50 days, termed recruitment favourable periods (RFPs). The occurrence of RFPs was compared with back-calculated spawning dates for each cohort. Finally, a comparison of RFPs with the time of spawning and the index of recruitment showed that in years where there were 50 or more days of favourable conditions following spawning, good recruitment followed (Mann-Whitney U-test: p = 0.064, n = 6). These results show the value of the SOM technique for describing spatio-temporal variability in oceanographic processes. Variability in these processes appears to be an important factor influencing recruitment in the Northern Benguela sardine, although the available data time series is currently too short to be conclusive. Nonetheless, the analysis of satellite data, using a neural network pattern-recognition approach, provides a useful framework for investigating fisheries recruitment problems.
Resumo:
The Continuous Plankton Recorder (CPR) survey provides a unique multi- decadal dataset on the abundance of plankton in the North Sea and North Atlantic and is one of only a few monitoring programmes operating at a large spatio- temporal scale. The results of all samples analysed from the survey since 1946 are stored on an Access Database at the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) in Plymouth. The database is large, containing more than two million records (~80 million data points, if zero results are added) for more than 450 taxonomic entities. An open data policy is operated by SAHFOS. However, the data are not on-line and so access by scientists and others wishing to use the results is not interactive. Requests for data are dealt with by the Database Manager. To facilitate access to the data from the North Sea, which is an area of high research interest, a selected set of data for key phytoplankton and zooplankton species has been processed in a form that makes them readily available on CD for research and other applications. A set of MATLAB tools has been developed to provide an interpolated spatio-temporal description of plankton sampled by the CPR in the North Sea, as well as easy and fast access to users in the form of a browser. Using geostatistical techniques, plankton abundance values have been interpolated on a regular grid covering the North Sea. The grid is established on centres of 1 degree longitude x 0.5 degree latitude (~32 x 30 nautical miles). Based on a monthly temporal resolution over a fifty-year period (1948-1997), 600 distribution maps have been produced for 54 zooplankton species, and 480 distribution maps for 57 phytoplankton species over the shorter period 1958-1997. The gridded database has been developed in a user-friendly form and incorporates, as a package on a CD, a set of options for visualisation and interpretation, including the facility to plot maps for selected species by month, year, groups of months or years, long-term means or as time series and contour plots. This study constitutes the first application of an easily accessed and interactive gridded database of plankton abundance in the North Sea. As a further development the MATLAB browser is being converted to a user- friendly Windows-compatible format (WinCPR) for release on CD and via the Web in 2003.
Resumo:
A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 ± 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10–70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52–6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β′Fe3+3(NN)β′Fe3+(NN)3 increased linearly with increasing pH according to log β′Fe3+3(NN)=2.4±0.6×pH+11.9±3.5log β′Fe3+(NN)3=2.4±0.6×pH+11.9±3.5 (salinity = 2.9, T = 20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 ± 4.1 nM equivalent of Fe(III) to 336.2 ± 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 ± 0.2 to 22.8 ± 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.
Resumo:
The Mediterranean Sea is located in a crossroad of mid-latitude and subtropical climatic modes that enhance contrasting environmental conditions over both latitudinal and longitudinal ranges. Here, we show that the large-scale environmental forcing is reflected in the basin scale trends of the adult population of the calanoid copepod Centropages typicus. The species is distributed over the whole Mediterranean basin, and maximal abundances were found in the north-western basin associated to oceanic fronts, and in the Adriatic Sea associated to shallow and semi enclosed waters. The peak of main abundances of C. typicus correlates with the latitudinal temperature gradient and the highest seasonal abundances occurred in spring within the 14–18°C temperature window. Such thermal cline may define the latitudinal geographic region where C. typicus seasonally dominates the >200 μm-sized spring copepod community in the Mediterranean Sea. The approach used here is generally applicable to investigate the large-scale spatial patterns of other planktonic organisms and to identify favourable environmental windows for population development.
Resumo:
Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.
Resumo:
Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.