5 resultados para Galicia (Poland and Ukraine) - Biography
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The mean intensity of the NE Atlantic upwelling system at its northern limit (Galicia, NW Spain) decreased during the last 40 years. At the same time, warming of surface waters was detected. Plankton biomass and composition are expected to reflect such changes when integrated over large time and space scales. In this study, biomass, abundance and species composition of phyto- and zooplankton were analysed to search for significant patterns of annual change and relations with upwelling intensity. Regionally integrated, mostly offshore, data were obtained from the Continuous Plankton Recorder (since 1958) whereas coastal data from Vigo and A Coruña came from the Radiales program (since 1987). No significant trends were found in phytoplankton biomass at either regional or local scales. However, there was a significant decrease in diatom abundance at regional scales and also of large species at local scales. Zooplankton abundance (mainly copepods) significantly decreased offshore but increased near the coast. Biomass of zooplankton also increased near the coast, with the fastest rates in the south. Warm-water species, like Temora stylifera, were increasingly abundant at both regional and local scales. Significant correlations between upwelling intensity and plankton suggest that climatic effects were delayed for several years. Our results indicate that the effects of large scale climatic trends on plankton communities are being effectively modulated within the pelagic ecosystem in this upwelling region.
Resumo:
Regenerated production (including organic nitrogen) is shown here to be important in the Ria de Vigo (Galicia, NW Iberia) in supporting both harmful algal bloom communities during the downwelling season, but also (to a lesser extent) diatom communities during stratified periods of weak to moderate upwelling. The Galician Rias, situated in the Iberian upwelling system, are regularly affected by blooms of toxic dinoflagellates, which pose serious threats to the local mussel farming industry. These tend to occur towards the end of summer, during the transition from upwelling to downwelling favourable seasons, when cold bottom shelf waters in the rias are replaced by warm surface shelf waters. Nitrate, ammonium and urea uptake rates were measured in the Ria de Vigo during a downwelling event in September 2006 and during an upwelling event in June 2007. In September the ria was well mixed, with a downwelling front observed towards the middle of the ria and relatively high nutrient concentrations (1.0-2.6 mu mol L-1 nitrate; 1.0-5.6 mu mol L-1 ammonium; 0.1-0.8 mu mol L-1 phosphate; 2.0-9.0 mu mol L-1 silicic acid) were present throughout the water column. Ammonium represented more than 80% of the nitrogenous nutrients, and the phytoplankton assemblage was dominated by dinoflagellates and small flagellates. In June the water column was stratified, with nutrient-rich, upwelled water below the thermocline and warm, nutrient-depleted water in the surface. At this time, nitrate represented more than 80% of the nitrogenous nutrients, and a mixed diatom assemblage was present. Primary phytoplankton production during both events was mainly sustained by regenerated nitrogen, with ammonium uptake rates of 0.035-0.063 mu mol N L-1 h(-1) in September and 0.078-0.188 mu mol N L-1 h(-1) in June. Although f-ratios were generally low (<0.2) in both June and September, a maximum of 0.61 was reached in June due to higher nitrate uptake (0.225 mu mol N L-1 h(-1)). Total nitrogen uptake was also higher during the upwelling event (0.153-0.366 in June and 0.053-0.096 mu mol N L-1 h(-1) in September). Nitrogen uptake kinetics demonstrated a strong preference for ammonium and urea over nitrate in June.