2 resultados para GENERAL REFRACTIVE INDEX

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET) products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain), and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Between 2000 and 2008, columnar optical and radiative properties were measured at the Plymouth Marine Laboratory (PML), UK (50° 21.95′N, 4° 8.85′W) using an automatic Prede POM01L sun–sky photometer. The database was analyzed for aerosol optical properties using the SKYRAD radiative inversion algorithm and calibrated using the in situ SKYIL calibration method. Retrievals include aerosol optical depth, Ångström wavelength exponent, aerosol volume distribution, refractive index and single scattering albedo. The results show that the Plymouth site is characterized by low values of aerosol optical depth with low variability (0.18 ± 0.08 at 500 nm) and a mean annual Ångström exponent of 1.03 ± 0.21. The annual mean of the single scattering albedo is 0.97, indicative of non-absorbing aerosols. The aerosol properties were classified in terms of air mass back trajectories: the area is mainly affected by Atlantic air masses and the dominant aerosol type is a mixture of maritime particles, present in low burdens with variable size. The maritime air masses were defined by annual mean values for the AOD (at 500 nm) of 0.13–0.14 and a wavelength exponent of 0.96–1.03. Episodic anthropogenic and mineral dust intrusions occasionally occur, but they are sporadic and dilute (AOD at 500 nm about 0.20). Tropical continental air masses were characterized by the highest AOD at 500 nm (0.34) and the lowest wavelength exponent (0.83), although they were the least represented in the analysis.