6 resultados para Functions of real variables

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized). Five key requirements were identified for the practical application of BEF relationships: (1) a complete understanding of strength, direction and prevalence of marine BEF relationships, (2) an understanding of which biological components are influential within specific BEF relationships, (3) the biodiversity of the selected biological components can be measured easily, (4) the ecological mechanisms that are the most important for generating marine BEF relationships, i.e. identity effects or complementarity, are known and (5) the proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships, has been established. Numerous positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems (requirement 1). Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation. Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria (requirement 2). This approach highlighted the main biological components contributing the most to specific ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention. The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes. Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships. The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate. Based on the five requirements, the information required for immediate ‘operationalization’ of BEF relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion within practical monitoring applications, supported by ecological modelling, shows promise for providing surrogate indicators of functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undulating Oceanographic Recorders (UORs) and Continuous Plankton Recorders (CPRs) equipped with a suite of sensors were towed by merchant vessels in the North Sea between 1988 and 1991, recording a range of environmental variables. These were used to interpret the results of analyses of the plankton taken on CPR tows off the northeast coast of the UK in 1989 and in the Skagerrak and Kattegat in July 1988 and through 1989. Correlations were found between the biota and the environmental variables. The tidal front off the northeast coast of the UK and the front between the low salinity water in the Kattegat and the higher salinity water in the Skagerrak were dominant factors correlating with the distribution of the plankton assemblages. Discontinuities, defining the positions of the fronts, in the values of physical variables (temperature and, where measured, salinity and turbidity) were closely identified with geographical divisions between plankton assemblages. Measures of irradiance were found to be important on several occasions, presumably due to diel migrations of the zooplankton.