38 resultados para Functional Fitness

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a trait-based description of diatom functional diversity to an existing plankton functional type (PFT) model, implemented for the eutrophied coastal ecosystem in the Southern Bight of the North Sea. The trait-based description represents a continuum of diatom species, each characterized by a distinct cell volume, and includes size dependence of four diatom traits: the maximum growth rate, the half-saturation constants for nutrient uptake, the photosynthetic efficiency, and the relative affinity of copepods for diatoms. Through competition under seasonally varying forcing, the fitness of each diatom varies throughout time, and the outcome of competition results in a changing community structure. The predicted seasonal change in mean cell volume of the community is supported by field observations: smaller diatoms, which are more competitive in terms of resource acquisition, prevail during the first spring bloom, whereas the summer bloom is dominated by larger species which better resist grazing. The size-based model is used to determine the ecological niche of diatoms in the area and identifies a range of viable sizes that matches observations. The general trade-off between small, competitive diatoms and large, grazing-resistant species is a convenient framework to study patterns in diatom functional diversity. PFT models and trait-based approaches constitute promising complementary tools to study community structure in marine ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of elevated pCO(2)/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567A degrees N, 4.1277A degrees W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (a"broken vertical bar(calc) = 0.78, a"broken vertical bar(ara) = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO(2) can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO(2)-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.

Relevância:

20.00% 20.00%

Publicador: