14 resultados para Four-helix bundle
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The performance of four common estimators of diversity are investigated using calanoid copepod data from the Continuous Plankton Recorder (CPR) survey. The region of the North Atlantic and the North Sea was divided into squares of 400 nautical miles for each 2-month period. For each 144 possible cases, Pielou's pooled quadrat method was performed with the aims of determining asymptotic diversity and investigating the CPR sample-size dependence of diversity estimators. It is shown that the performance of diversity indices may greatly vary in space and time (at a seasonal scale). This dependence is more pronounced in higher diverse environments and when the sample size is small. Despite results showing that all estimators underestimate the `actual' diversity, comparison of sites remained reliable from a few pooled CPR samples. Using more than one CPR sample, the Gini coefficient appears to be a better diversity estimator than any other indices and spatial or temporal comparisons are highly satisfactory. In situations where comparative studies are needed but only one CPR sample is available, taxonomic richness was the preferred method of estimating diversity. Recommendations are proposed to maximise the efficiency of diversity estimations with the CPR data.
Resumo:
1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973–2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predators.
Resumo:
Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect ‘bottom-up’ climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986–2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66±0.02°C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = −0.305±0.125; 1-group: p = 0.04, slope = −0.410±0.193). Seabird demographics showed complex species–specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314±0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = −0.144±0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.
Resumo:
Deriving maps of phytoplankton taxa based on remote sensing data using bio-optical properties of phytoplankton alone is challenging. A more holistic approach was developed using artificial neural networks, incorporating ecological and geographical knowledge together with ocean color, bio-optical characteristics, and remotely sensed physical parameters. Results show that the combined remote sensing approach could discriminate four major phytoplankton functional types (diatoms, dinoflagellates, coccolithophores, and silicoflagellates) with an accuracy of more than 70%. Models indicate that the most important information for phytoplankton functional type discrimination is spatio-temporal information and sea surface temperature. This approach can supply data for large-scale maps of predicted phytoplankton functional types, and an example is shown.
Resumo:
Coccolithoviruses infect the marine coccolithophorid microalga Emiliania huxleyi. Here, we describe the genomes of four new coccolithoviruses isolated from UK coastal locations. Of particular interest, EhV-18 and EhV-145 encode serine palmitoyltransferase function via two distinct genes, whereas all other coccolithoviruses have SPT as a gene fusion of LCB1/LCB2 domains.