4 resultados para Final disposals
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The DIESE program (Determination of relevant Indicators for Environmental monitoring: A Strategy for Europe) brought together seven French and British research teams, a private company and the agencies responsible for the management of water bodies of the two countries (ONEMA and the Environmental Agency) in a joint effort to document the ecotoxicological effects related to the presence of chemicals in the environment. To contribute to a better understanding and management of the environment, the program has expanded its efforts to (1) use existing knowledge, or new information acquired during the research program, to identify important biological problems affecting wildlife, (2) increase our understanding of toxicological mechanisms involved and thus be able to identify the causes of the identified dysfunctions and (3) to hone our expertise and vigilance systems in order to better monitor changes in the environment and make appropriate diagnoses. The first part of the program identified clear biological effects, and using biological tests representative of the mechanisms of action of compounds, identified the responsible compounds present in the environment. In connection with the feminization observed in many fish species in European streams, a search for estrogenic and anti-androgenic compounds was conducted. A new test identifying estrogenic compounds has been developed in roach and the ER-Calux test for anti-androgenic effects has been implemented. The results showed that, in addition to biocides such as triclosan and chlorophène, many aromatic hydrocarbon compounds are likely to disturb the physiology of living organisms by interacting with the androgen receptor. Six of these were identified in sediment extracts: benzanthrone, fluoranthene, 1,2- benzodiphenylene sulfide, benzo[a]pyrene, benz[a] anthracene, and 9-phenylcarbazole. The second part of the program aimed at documenting and understanding the mechanisms of action of chemicals leading to physiological changes. This work represents a particular challenge when dealing with molluscs, as knowledge about their physiology and endocrinology is still fragmentary. Thus, new technologies including metabolomic and transcriptomic analyses have been implemented in order to obtain a comprehensive picture of the effects on molluscs. Metabolomic research demonstrated that estrogenic compounds are able to alter the metabolism of eicosanoids and amines, while transcriptomic strategies identified genes whose expression is altered in intersex clams. Because these genes mainly appear as “male” genes, the results suggest that these profound physiological changes result from demasculinisation of male clams. Proteomic studies have also been carried out to elucidate the mechanisms of action of pollutants on fish physiology. These studies generally included a set of molecular marker measurements in an integrative and ecological perspective. The results showed that not only male fish physiology is altered but also female reproductive status is impaired. Moreover, it appeared that other alterations of the fish endocrine system, such as androgenic effects, are at work and that the immune system is also subject to chemical pressure including effects from environmental estrogens. Notably, the immune system, like the endocrine system, seems to show periods of particular sensitivity during development. Measurements on growth and on the general metabolism emphasize the importance of environmental conditions in the physiology of aquatic organisms and in particular the inter-site variability due to temperature,hypoxic conditions, and fish development strategies. They thus provide a unique perspective that allow us to better understand the context and consequences of natural conditions on the population. In a third part of the program, the research conducted had the objective of developing and testing a biomarker strategy to support the environmental management methodologies. Two lanes of specific studies have been followed. The first was to implement, over all or part of the study area, robust biomarkers to establish maps that highlight the water bodies at risk and provide information on sources of compounds and associated disturbances. The second part of the work aimed at exploring methodologies to take advantage of biomarker measurements and to integrate them in a very simple and clear index. Partial or comprehensive maps of the Channel area were produced to report the presence of mutagenic or anti-androgenic compounds in the sediments, intersex fish and clams, and imposex. These maps may remain to be completed and work will be necessary to confront this information in order to learn relevant lessons for management of the environment, a goal that the DIESE program has contributed to by providing some necessary and original information.
Resumo:
The DIESE program (Determination of relevant Indicators for Environmental monitoring: A Strategy for Europe) brought together seven French and British research teams, a private company and the agencies responsible for the management of water bodies of the two countries (ONEMA and the Environmental Agency) in a joint effort to document the ecotoxicological effects related to the presence of chemicals in the environment. To contribute to a better understanding and management of the environment, the program has expanded its efforts to (1) use existing knowledge, or new information acquired during the research program, to identify important biological problems affecting the wildlife, (2) increase our understanding of toxicological mechanisms involved and thus be able to identify the causes of the identified dysfunctions and (3) to hone our expertise and vigilance system in order to better monitor changes in the environment and make appropriate diagnoses.