12 resultados para Female preference

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Western rock lobsters, Panulirus cygnus are an abundant benthic consumer distributed along the temperate west coast of Australia and constitute the largest single species fishery in Australia. As a dominant consumer, it is important to understand their predator-prey interactions as they can potentially exert strong trophic effects, and may influence ecosystem function as seen in other spiny lobster species. While previous field studies have focused on the diet composition of P. cygnus, this study investigated their preference for various benthic invertebrate prey to better understand the likely predator-prey interactions of P. cygnus. Prey preferences of small sub-legal juvenile lobsters, as well as medium and large legal-sized mature lobsters were investigated using laboratory feeding trials to identify size-associated differences in lobster prey preference. Handling time and diet quality were investigated to estimate energetic cost and gain from consuming different prey which may explain prey choice by lobsters. It was found that large lobsters preferred crabs and mussels while medium and small lobsters preferred crabs over mussels, gastropods, and sea urchins. This suggests that strong predator-prey interactions between P. cygnus and crabs may occur in the wild.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, (1)H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gusmão et al. (2013; Mar Ecol Prog Ser 482:279-298) review causes of sex ratio skew in pelagic copepods and in doing so repeatedly dispute the paper of Hirst et al. (2010) ‘Does predation control adult sex ratios and longevities in marine pelagic copepods?’ Here we respond to some important errors in their citation of our paper and briefly highlight where future work is needed in order to attribute the causes of strong sex ratio skew seen in some copepod families.