2 resultados para Feedstocks
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.
Resumo:
Accurate quantification of carbohydrate content of biomass is crucial for many bio-refining applications. The standardised NREL two stage complete acid hydrolysis protocol was evaluated for its suitability towards seaweeds, as the protocol was originally developed for lignocellulosic feedstocks. The compositional differences between the major polysaccharides in seaweeds and terrestrial plants, and seaweed’s less recalcitrant nature, could suggest the NREL based protocol may be too extreme. Underestimations of carbohydrate content through the degradation of liberated sugars into furan compounds may yield erroneous data. An optimised analysis method for carbohydrate quantification in the brown seaweed L. digitata was thus developed and evaluated. Results from this study revealed stage 1 of the assay was crucial for optimisation however stage 2 proved to be less crucial. The newly optimised protocol for L. digitata yielded 210 mg of carbohydrate per g of biomass compared to a yield of only 166 mg/g from the original NREL protocol. Use of the new protocol on two other species of seaweed also gave consistent results; higher carbohydrate and significantly lower sugar degradation products generation than the original protocol. This study demonstrated the importance of specific individual optimisations of the protocol for accurate sugar quantification, particularly for different species of seaweed