4 resultados para Feed-in tariffs

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate effects have been shown to be at least partly responsible for the reorganisation in the plankton ecosystem on the shelf seas of NW Europe over the last 50 years. Most fish larvae feed primarily on zooplankton, so changes in zooplankton quantity, quality and seasonal timing have been hypothesized to be a key factor affecting their survival. To investigate this we have implemented a 1-dimensional trophodynamic growth model of cod larvae for the waters around the UK covering the period 1960 to 2003. Larval growth is modelled as the difference between the amount of food absorbed by the larva and its various metabolic costs. Prey availability is based upon the biomass and size of available preys (i.e. adults and nauplii copepods and cladocerans) taken from the Continuous Plankton Recorder dataset. Temperature and wind forcing are also taken into account. Results suggest that observed changes in plankton community structure may have had less impact than previously suggested. This is because changes in prey availability may be compensated for by increased temperatures resulting in little overall impact on potential larval growth. Stock recovery, at least in the short term is likely to be more dependent upon conserving the year classes recruited to allow spawning stock biomass to rebuild. If as our model suggests, the larvae are still able to survive in the changing environment, reduction in fishing on the adults is needed to allow the stock to recover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In conjunction with the North Pacific Continuous Plankton Recorder program, we conducted surveys of seabirds from June 2002 to June 2007. Here, we tested the hypotheses of (i) east–west variations in coupled plankton and seabird abundance, and (ii) that surface-feeding and diving seabirds vary in their relationships to primary productivity and mesozooplankton species abundance and diversity. To test these hypotheses, we developed statistical models for 20 species of seabirds and 12 zooplankton taxonomic groups. Seabird density was highly variable between seasons, but was consistently higher in the western than eastern North Pacific. Seabird diversity was greater in the east. Zooplankton abundance did not differ between regions. We found associations at the “bulk” level between seabird density and net primary productivity, but only one association between seabirds and total zooplankton abundance or diversity. However, we found many relationships between seabird species and the abundance of different zooplankton summarized at the genus or family level. Some of these taxonomic relationships reflect direct predator–prey interactions, while others may reflect zooplankton that serve as ecological indicators of other prey, such as micronekton, upon which the birds may feed. Surface or near-surface feeding, mostly piscivorous seabirds, did not differ systematically from diving, mainly planktivorous seabirds in their zooplankton associations. Seabirds apparently respond to zooplankton taxonomic groupings more so than bulk zooplankton characteristics, such as abundance or diversity. Macro-ecological studies of remote marine ecosystems using zooplankton and seabirds as ecological indicators provide a framework for understanding and assessing spatial and temporal variations in these difficult-to-study pelagic environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, the oceans will be subjected to a massive development of marine infrastructures, including offshore wind, tidal and wave energy farms and constructions for marine aquaculture. The development of these facilities will unavoidably exert environmental pressures on marine ecosystems. It is therefore crucial that the economic costs, the use of marine space and the environmental impacts of these activities remain within acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from being economically feasible due to many combined aspects, such as immature technologies for energy conversion, local energy storage and moorings. Therefore, multi-purpose solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and transportation facilities can be considered as a challenging, yet advantageous, way to boost blue growth. This would be due to the sharing of the costs of installation and using the produced energy locally to feed the different functionalities and optimizing marine spatial planning. This paper focuses on the synergies that may be produced by a multi-purpose offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and specifically offshore Venice. It analyzes the combination of aquaculture, energy production from wind and waves, and energy storage or transfer. Alternative solutions are evaluated based on specific criteria, including the maturity of the technology, the environmental impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked and a preliminary layout of the selected multi-purpose installation for the case study is proposed, to further allow the exploitation of the synergies among different functionalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.