13 resultados para Failure Diagnostic
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll-a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003–04. Surface rates of carbon fixation ranged from <0.2-mmol C m−3 d−1 in the subtropical gyres to 0.2–0.5-mmol C m−3 d−1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll-a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50–70%) and chlorophyll-a (80–90%), nanoplankton (>2-μm) contributions to total carbon fixation (30–50%) were higher than to total chlorophyll-a (10–20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70–90%) and chlorophyll-a (70–90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2–3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll-a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.
Resumo:
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.
Resumo:
Environmentally induced change appears to be impacting the recruitment of North Sea herring (Clupea harengus). Despite simultaneously having a large adult population, historically low exploitation, and Marine Stewardship Council accreditation (implying sustainability), there have been an unprecedented 6 sequential years of poor juvenile production (recruitment). Analysis suggests that the poor recruitment arises during the larval overwintering phase, with recent survival rates greatly reduced. Contemporary warming of the North Sea has caused significant changes in the plankton community, and a recently identified regime shift around 2000 shows close temporal agreement with the reduced larval survival. It is, therefore, possible that we are observing the first consequences of this planktonic change for higher trophic levels. There is no indication of a recovery in recruitment in the short term. Fishing mortality is currently outside the agreed management plan, and forecasts show a high risk of the stock moving outside safe biological limits soon, potentially precipitating another collapse of the stock. However, bringing the realized fishing mortality back in line with the management plan would likely alleviate the problem. This illustrates again that recruitment is influenced by more than just spawning-stock biomass, and that changes in other factors can be of equal, or even greater, importance. In such dynamically changing environments, recent management success does not necessarily guarantee future sustainability.
Resumo:
New regional swath and near-bottom bathymetric data provide constraints on shallow structures at the Hess Deep Rift, an oceanic rift that exposes the crust and upper mantle of fast-spreading oceanic lithosphere created at the East Pacific Rise. These data reveal the presence of a lobate structure with a length of ~ 4 km and a width of ~ 6 km south of an Intrarift Ridge, north of Hess Deep. The lobe consists of a series of concentric benches that are widest in the center of the lobe and narrower at the edges, with a dominant bench separating two distinct morphologic regions in the lobe. There are two end-member possible interpretations of this feature: 1) the lobate structure represents a mass failure with little translation that contains coherent blocks that preserve rift-related lineaments; or 2) it represents degraded tectonic structures, and the lobate form is accounted for by, for example, two intersecting faults. We favor the slump interpretation because it more readily accounts for the lobate form of the feature and the curved benches and based on the presence of other similar lobes in this region. In the slump model, secondary structures within the benches may indicate radial spreading during or after failure. The large lobate structure we identify south of the Intrarift Ridge in Hess Deep is one of the first features of its kind identified in an oceanic rift, and illustrates that mass failure may be a significant process in these settings, consistent with the recognition of their importance in mid-ocean ridges, oceanic islands, and continental rifts. Understanding the structure of the Hess Deep Rift is also important for reconstructing the section of fast-spreading oceanic crust exposed here.