11 resultados para FVCOM

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shelf seas comprise approximately 7% of the world’s oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometrescale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shelf seas comprise approximately 7% of the world’s oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometrescale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are in an era of unprecedented data volumes generated from observations and model simulations. This is particularly true from satellite Earth Observations (EO) and global scale oceanographic models. This presents us with an opportunity to evaluate large scale oceanographic model outputs using EO data. Previous work on model skill evaluation has led to a plethora of metrics. The paper defines two new model skill evaluation metrics. The metrics are based on the theory of universal multifractals and their purpose is to measure the structural similarity between the model predictions and the EO data. The two metrics have the following advantages over the standard techniques: a) they are scale-free, b) they carry important part of information about how model represents different oceanographic drivers. Those two metrics are then used in the paper to evaluate the performance of the FVCOM model in the shelf seas around the south-west coast of the UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are in an era of unprecedented data volumes generated from observations and model simulations. This is particularly true from satellite Earth Observations (EO) and global scale oceanographic models. This presents us with an opportunity to evaluate large scale oceanographic model outputs using EO data. Previous work on model skill evaluation has led to a plethora of metrics. The paper defines two new model skill evaluation metrics. The metrics are based on the theory of universal multifractals and their purpose is to measure the structural similarity between the model predictions and the EO data. The two metrics have the following advantages over the standard techniques: a) they are scale-free, b) they carry important part of information about how model represents different oceanographic drivers. Those two metrics are then used in the paper to evaluate the performance of the FVCOM model in the shelf seas around the south-west coast of the UK.