4 resultados para FOSSIL RECORD
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
ABSTRACT. – Phylogenies and molecular clocks of the diatoms have largely been inferred from SSU rDNA sequences. A new phylogeny of diatoms was estimated using four gene markers SSU and LSU rDNA rbcL and psbA (total 4352 bp) with 42 diatom species. The four gene trees analysed with a maximum likelihood (ML) and Baysian (BI) analysis recovered a monophyletic origin of the new diatom classes with high bootstrap support, which has been controversial with single gene markers using single outgroups and alignments that do not take secondary structure of the SSU gene into account. The divergence time of the classes were calculated from a ML tree in the MultliDiv Time program using a Bayesian estimation allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution of different branches in the phylogenetic tree. These divergence times are generally in agreement with those proposed by other clocks using single genes with the exception that the pennates appear much earlier and suggest a longer Cretaceous fossil record that has yet to be sampled. Ghost lineages (i.e. the discrepancy between first appearance (FA) and molecular clock age of origin from an extant taxon) were revealed in the pennate lineage, whereas those ghost lineages in the centric lineages previously reported by others are reviewed and referred to earlier literature.
Resumo:
ABSTRACT. – Phylogenies and molecular clocks of the diatoms have largely been inferred from SSU rDNA sequences. A new phylogeny of diatoms was estimated using four gene markers SSU and LSU rDNA rbcL and psbA (total 4352 bp) with 42 diatom species. The four gene trees analysed with a maximum likelihood (ML) and Baysian (BI) analysis recovered a monophyletic origin of the new diatom classes with high bootstrap support, which has been controversial with single gene markers using single outgroups and alignments that do not take secondary structure of the SSU gene into account. The divergence time of the classes were calculated from a ML tree in the MultliDiv Time program using a Bayesian estimation allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution of different branches in the phylogenetic tree. These divergence times are generally in agreement with those proposed by other clocks using single genes with the exception that the pennates appear much earlier and suggest a longer Cretaceous fossil record that has yet to be sampled. Ghost lineages (i.e. the discrepancy between first appearance (FA) and molecular clock age of origin from an extant taxon) were revealed in the pennate lineage, whereas those ghost lineages in the centric lineages previously reported by others are reviewed and referred to earlier literature.
Resumo:
Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.
Resumo:
Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.