82 resultados para European landscapes
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Prey landscapes help identify potential foraging habitats for leatherback turtles in the NE Atlantic
Resumo:
Identifying key marine megavertebrate habitats has become ever more important as concern increases regarding global fisheries bycatch and accelerated climate change. This will be aided by a greater understanding of the patterns and processes determining the spatiotemporal distribution of species of conservation concern. We identify probable foraging grounds for leatherback turtles in the NE Atlantic using monthly landscapes of gelatinous organism distribution constructed from Continuous Plankton Recorder Survey data. Using sightings data (n = 2013 records, 1954 to 2003) from 9 countries (UK, Ireland, France, Belgium, The Netherlands, Denmark, Germany, Norway and Sweden), we show sea surface temperatures of approximately 10 to 12 degree C most likely indicate the lower thermal threshold for accessible habitats during seasonal foraging migrations to high latitudes. Integrating maps of gelatinous plankton as a possible indicator of prey distribution with thermal tolerance parameters demonstrates the dynamic (spatial and temporal) nature of NE Atlantic foraging habitats. We highlight the importance of body size- related thermal constraints in structuring leatherback foraging populations and demonstrate a latitudinal gradient in body size (Bergmann's rule) where smaller animals are excluded from higher latitude foraging areas. We highlight the marine area of the European continental shelf edge as being both thermally accessible and prey rich, and therefore potentially supporting appreciable densities of foraging leatherbacks, with some suitable areas not yet extensively surveyed.
Resumo:
The UK and EU have recently committed to an ecosystem-based approach to the management of our marine environment. In line with the requirements of the Habitats regulations, all consents likely to significantly affect Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) are to be reviewed. As part of this process, 'site characterisation' is seen as an important first step towards the improved management of designated sites. This characterisation series, undertaken by the Marine Biological Association of the United Kingdom and funded by the Environment Agency and English Nature, sets out to determine the current status of designated marine sites in South West England, and how vulnerable (or robust) they are to contaminants (metals, organics, nutrients) and other anthropogenic pressures. Using published information and unpublished data-sets from regulatory agencies, conservation bodies and research institutes (particularly those of the PMPS*), evidence is compiled on the links between potentially harmful 'activities', environmental quality, and resultant biological consequences. This includes an evaluation of long-term change. The focus is the effect of water and sediment quality on the key interest features of European Marine sites in the South West of England, namely: - Fal and Helford cSAC (MBA Occasional Publication 8) - Plymouth Sound and Estuaries cSAC/ SPA (MBA Occasional Publication 9) - Exe Estuary SPA (MBA Occasional Publication 10) - Chesil and the Fleet cSAC/ SPA (MBA Occasional Publication 11) - Poole Harbour SPA (MBA Occasional Publication 12) - Severn Estuary pSAC/SPA (MBA Occasional Publication 13) Detailed analysis for each of these sites is provided individually. The summary report contains an overview of physical properties, uses and vulnerability for each of these sites, together with brief comparisons of pollution sources, chemical exposure (via sediment and water) and evidence of biological impact (from bioaccumulation to community-level response). Limitations of the data, and gaps in our understanding of these systems are highlighted and suggestions are put forward as to where future research and surveillance is most needed. Hopefully this may assist the statutory authorities in targeting future monitoring and remedial activities. * PMSP: Plymouth Marine Sciences Partnership, comprising the Marine Biological Association (MBA), University of Plymouth (UoP), the Sir Alister Hardy Foundation for Ocean Science, and Plymouth Marine Laboratories (PML)
Resumo:
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.
Resumo:
We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 C water, with maximum abundances from 13-17 C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 C, with peak abundances from 0 to 9 C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.
Resumo:
This report provides an overview of water and sediment quality within the Essex Estuaries European Marine Site (EMS) and examines evidence for their influence on biological condition. Site characterisation has been accomplished by review of published literature and unpublished reports, together with interrogation of summary data sets for tidal waters provided by EA.