3 resultados para Entropy of a sampling design
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Data on the abundance and biomass of zooplankton off the northwestern Portuguese coast, separately estimated with a Longhurst-Hardy Plankton Recorder (LHPR) and a Bongo net, were analysed to assess the comparative performance of the samplers. Zooplankton was collected along four transects perpendicular to the coast, deployments alternating between samplers. Total zooplankton biomass measured using the LHPR was significantly higher than that using the Bongo net. Apart from Appendicularia and Cladocera, abundances of other taxa (Copepoda, Mysidacea, Euphausiacea, Decapoda larvae, Amphipoda, Siphonophora, Hydromedusae, Chaetognatha and Fish eggs) were also consistently higher in the LHPR. Some of these differences were probably due to avoidance by the zooplankton of the Bongo net. This was supported by a comparative analysis of prosome length of the copepod Calanus helgolandicus sampled by the two nets that showed that Calanus in the LHPR samples were on average significantly larger, particularly in day samples. A ratio estimator was used to produce a factor to convert Bongo net biomass and abundance estimates to equate them with those taken with the LHPR. This method demonstrates how results from complementary zooplankton sampling strategies can be made more equivalent.
Resumo:
Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a 'cost'-optimal allocation of sampling effort should typically include some level of within-otolith replication in the experimental design. Our findings provide novel evidence to aid the design of future sampling programs and improve our general understanding of the mechanisms regulating elemental fingerprints.