8 resultados para English Studies
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.
Resumo:
Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.
Resumo:
Meroplankton are seasonally important contributors to the zooplankton, particularly at inshore sites, yet their feeding ecology is poorly known relative to holoplankton. While several studies have measured feeding in decapod larvae, few studies have examined the feeding rates of decapod larvae on natural prey assemblages throughout the reproductive season. We conducted 8 feeding experiments with Necora puber, Liocarcinus spp. and Upogebia spp. zoea larvae collected from the L4 monitoring site off Plymouth (50°15.00′N, 4°13.02′W) during spring–summer 2009 and 2010. This period spanned moderate-to-high food availability (0.5–1.6 µg chl-a L−1), but a great range in food composition with small cells <20 µm dominating in 2010. Daily rations averaged 17, 60 and 22 % of body C for the 3 respective decapod species. Clearance rates differed according to prey type, and all 3 decapod genera showed evidence of selection of dinoflagellates. Importantly, small cells including nano- and pico-plankton were ingested, this being demonstrated independently by flow cytometric analysis of the feeding experiments and molecular analysis. PCR-based analysis of the haptophyte portion of the diet revealed ingestion of Isochrysis galbana by decapod larvae in the bottle incubations and Isochrysis galbana and Phaeocystis globosa by decapod larvae collected directly from the field. This study has shown that pico- and nano-sized plankton form an important supplement to the diverse and variable diet of decapod larvae.
Resumo:
Growing evidence has shown a profound modification of plankton communities of the North East Atlantic and adjacent seas over the past decades. This drastic change has been attributed to a modification of the environmental conditions that regulate the dynamics and the spatial distribution of ectothermic species in the ocean. Recently, several studies have highlighted modifications of the regional climate station L4 (50° 15.00′N, 4° 13.02′W) in the Western English Channel. We here focus on the modification of the plankton community by studying the long-term, annual and seasonal changes of five zooplankton groups and eight copepod genera. We detail the main composition and the phenology of the plankton communities during four climatic periods identified at the L4 station: 1988–1994, 1995–2000, 2001–2007 and 2008–2012. Our results show that long-term environmental changes underlined by Molinero et al. (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English Channel.
Resumo:
Growing evidence has shown a profound modification of plankton communities of the North East Atlantic and adjacent seas over the past decades. This drastic change has been attributed to a modification of the environmental conditions that regulate the dynamics and the spatial distribution of ectothermic species in the ocean. Recently, several studies have highlighted modifications of the regional climate station L4 (50° 15.00′N, 4° 13.02′W) in the Western English Channel. We here focus on the modification of the plankton community by studying the long-term, annual and seasonal changes of five zooplankton groups and eight copepod genera. We detail the main composition and the phenology of the plankton communities during four climatic periods identified at the L4 station: 1988–1994, 1995–2000, 2001–2007 and 2008–2012. Our results show that long-term environmental changes underlined by Molinero et al. (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English Channel.