15 resultados para Endocrine glands.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The phenomenon of endocrine disruption is currently a source of growing concern. Feminisation of male fish in UK rivers has been shown to occur extensively and has been linked with exposure to endocrine-disrupting compounds present in the environment. Much less is known of the extent and scale of endocrine disruption in estuarine and marine ecosystems, particularly in invertebrates. We present evidence that intersex, in the form of ovotestis, is occurring in the common estuarine bivalve Scrobicularia plana, which is considered to be inherently gonochoristic. We report varying degrees in the severity of ovotestis in male S. plana, and have adopted and developed a grading method to assess the extent of this intersex condition. These findings indicate that S. plana offers potential for widespread screening and investigation of endocrine disruption, helping to focus remediatory strategy.
Resumo:
Endocrine disruption has rarely been reported in field populations of the edible cockle and the context with the general health of the shellfish is unclear. This study examined the reproductive state of two Cerastoderma edule populations over a 6-month period to assess their reproductive condition, the incidence of intersex and presence of parasitic infection. A further seven native sites from south-west England were examined during the peak reproductive season to identify the presence of intersex within the region. Laboratory exposures of organisms collected from field populations showed a significantly female-biased sex ratio compared with controls when exposed to the endocrine disrupting chemicals, bisphenol-A (nominal concentration: 0.1 µg L−1) and 17β-oestradiol (nominal concentration: 0.1 µg L−1), but none of the chemical exposures induced intersex. Intersex was revealed in seven out of the nine native populations of C. edule sampled at peak reproductive season. The highest incidence and most severe case of intersex were reported at Lower Anderton on the River Tamer which also had a significantly female-biased sex ratio. Additionally, the dominant trematode family was the Bucephalaidae. Parasitic infection influences the maturity of C. edule by lowering both mean gonad index and condition index. These results suggest that endocrine disrupting chemicals could be contributing factors towards the development of intersex in C. edule.
Resumo:
Endocrine disruption has rarely been reported in field populations of the edible cockle and the context with the general health of the shellfish is unclear. This study examined the reproductive state of two Cerastoderma edule populations over a 6-month period to assess their reproductive condition, the incidence of intersex and presence of parasitic infection. A further seven native sites from south-west England were examined during the peak reproductive season to identify the presence of intersex within the region. Laboratory exposures of organisms collected from field populations showed a significantly female-biased sex ratio compared with controls when exposed to the endocrine disrupting chemicals, bisphenol-A (nominal concentration: 0.1 µg L−1) and 17β-oestradiol (nominal concentration: 0.1 µg L−1), but none of the chemical exposures induced intersex. Intersex was revealed in seven out of the nine native populations of C. edule sampled at peak reproductive season. The highest incidence and most severe case of intersex were reported at Lower Anderton on the River Tamer which also had a significantly female-biased sex ratio. Additionally, the dominant trematode family was the Bucephalaidae. Parasitic infection influences the maturity of C. edule by lowering both mean gonad index and condition index. These results suggest that endocrine disrupting chemicals could be contributing factors towards the development of intersex in C. edule.
Resumo:
This review provides insights into the distribution and impact of oestrogens and xeno-oestrogens in the aquatic environment and highlights some significant knowledge gaps in our understanding of endocrine disrupting chemicals. Key areas of uncertainty in the assessment of risk include the role of estuarine sediments in mediating the fate and bioavailability of environmental (xeno)oestrogens (notably their transfer to benthic organisms and estuarine food chains), together with evidence for endocrine disruption in invertebrate populations. Emphasis is placed on using published information to interpret the behaviour and effects of a small number of model compounds thought to contribute to oestrogenic effects in nature; namely, the natural steroid 17 beta -oestradiol (E2) and the synthetic hormone 17 alpha -ethinyloestradiol (EE2), together with the alkyl-phenols octyl- and nonyl-phenol (OP, NP) as oestrogen mimics. Individual sections of the review are devoted to sources and concentrations of (xeno)oestrogens in waterways, sediment partitioning and persistence, bioaccumulation rates and routes, assays and biomarkers of oestrogenicity, and, finally, a synopsis of reproductive and ecological effects in aquatic species.
Resumo:
The marine bivalve mollusc,Mytilus edulis (blue mussel), is a noted accumulator of many environmental pollutants and is increasingly used for the chemical and biological assessment of environmental impact. The toxic effects of crude oil-derived aromatic hydrocarbons (30 μg/l total hydrocarbons) on the lysosomal-vacuolar system of the digestive cells have been investigated in cryostat sections of hexane-frozen digestive glands. Exposure to aromatic hydrocarbons reduced the cytochemically determined latency of lysosomal β-N-acetylhexosaminidase; lysosomal volume density and surface density increased while the numerical density decreased. Experimental exposure resulted in the formation of very large lysosomes which are believed to be largely autophagic in function and these results indicate a significant structural and functional disturbance of digestive cell lysosomes in response to hydrocarbons.
Resumo:
A cytochrome P-450-dependent benzo[a]pyrene mono-oxygenase enzyme system (BPM) has been identified and partially characterized in males of the shore crab Carcinus maenas (L.). Apparent Km values obtained at 30 °C using microsomal preparations from the antennary glands of animals collected during summer were in the range 1.61–2.11 µM. The cytochrome P-450 content was 0·022 nmol/mg microsomal protein when BPM activity in the same preparation was 0·085 nmol/mg protein/min.
Resumo:
The DIESE program (Determination of relevant Indicators for Environmental monitoring: A Strategy for Europe) brought together seven French and British research teams, a private company and the agencies responsible for the management of water bodies of the two countries (ONEMA and the Environmental Agency) in a joint effort to document the ecotoxicological effects related to the presence of chemicals in the environment. To contribute to a better understanding and management of the environment, the program has expanded its efforts to (1) use existing knowledge, or new information acquired during the research program, to identify important biological problems affecting wildlife, (2) increase our understanding of toxicological mechanisms involved and thus be able to identify the causes of the identified dysfunctions and (3) to hone our expertise and vigilance systems in order to better monitor changes in the environment and make appropriate diagnoses. The first part of the program identified clear biological effects, and using biological tests representative of the mechanisms of action of compounds, identified the responsible compounds present in the environment. In connection with the feminization observed in many fish species in European streams, a search for estrogenic and anti-androgenic compounds was conducted. A new test identifying estrogenic compounds has been developed in roach and the ER-Calux test for anti-androgenic effects has been implemented. The results showed that, in addition to biocides such as triclosan and chlorophène, many aromatic hydrocarbon compounds are likely to disturb the physiology of living organisms by interacting with the androgen receptor. Six of these were identified in sediment extracts: benzanthrone, fluoranthene, 1,2- benzodiphenylene sulfide, benzo[a]pyrene, benz[a] anthracene, and 9-phenylcarbazole. The second part of the program aimed at documenting and understanding the mechanisms of action of chemicals leading to physiological changes. This work represents a particular challenge when dealing with molluscs, as knowledge about their physiology and endocrinology is still fragmentary. Thus, new technologies including metabolomic and transcriptomic analyses have been implemented in order to obtain a comprehensive picture of the effects on molluscs. Metabolomic research demonstrated that estrogenic compounds are able to alter the metabolism of eicosanoids and amines, while transcriptomic strategies identified genes whose expression is altered in intersex clams. Because these genes mainly appear as “male” genes, the results suggest that these profound physiological changes result from demasculinisation of male clams. Proteomic studies have also been carried out to elucidate the mechanisms of action of pollutants on fish physiology. These studies generally included a set of molecular marker measurements in an integrative and ecological perspective. The results showed that not only male fish physiology is altered but also female reproductive status is impaired. Moreover, it appeared that other alterations of the fish endocrine system, such as androgenic effects, are at work and that the immune system is also subject to chemical pressure including effects from environmental estrogens. Notably, the immune system, like the endocrine system, seems to show periods of particular sensitivity during development. Measurements on growth and on the general metabolism emphasize the importance of environmental conditions in the physiology of aquatic organisms and in particular the inter-site variability due to temperature,hypoxic conditions, and fish development strategies. They thus provide a unique perspective that allow us to better understand the context and consequences of natural conditions on the population. In a third part of the program, the research conducted had the objective of developing and testing a biomarker strategy to support the environmental management methodologies. Two lanes of specific studies have been followed. The first was to implement, over all or part of the study area, robust biomarkers to establish maps that highlight the water bodies at risk and provide information on sources of compounds and associated disturbances. The second part of the work aimed at exploring methodologies to take advantage of biomarker measurements and to integrate them in a very simple and clear index. Partial or comprehensive maps of the Channel area were produced to report the presence of mutagenic or anti-androgenic compounds in the sediments, intersex fish and clams, and imposex. These maps may remain to be completed and work will be necessary to confront this information in order to learn relevant lessons for management of the environment, a goal that the DIESE program has contributed to by providing some necessary and original information.
Resumo:
Estuarine clams Scrobicularia plana were sampled from 108 intertidal locations around the English Channel and adjacent areas. Although S. plana is believed to be a strict gonochorist, 58% of the populations sampled included intersexed individuals (described as male clams exhibiting ovotestis). Over the entire region, on average, 8.6% of male clams exhibited intersex, although proportions of affected males ranged from 0% to 53% depending on location. The severity of intersex was assessed using a simple classification scale, with the majority of individuals showing low levels of impact. Sex ratios were significantly skewed at some sites. There were no significant relationships between the incidence and severity of intersex; or of associations with size or parasitism of individual clams. Intersex in S. plana is a useful tool to assess endocrine disruptive effects in estuaries, although mechanisms of impact and causative agents remain uncertain.