3 resultados para Embryonic Mortality, Fungal Infection, Habitat Choice, Soil pH, Terrestrial Nesting
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The deep sea is Earth’s largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at Pacific Ocean methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over two years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes’ intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host’s body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep sea biosphere.
Resumo:
During recent decades anthropogenic activities have dramatically impacted the Black Sea ecosystem. High levels of riverine nutrient input during the 1970s and 1980s caused eutrophic conditions including intense algal blooms resulting in hypoxia and the subsequent collapse of benthic habitats on the northwestern shelf. Intense fishing pressure also depleted stocks of many apex predators, contributing to an increase in planktivorous fish that are now the focus of fishing efforts. Additionally, the Black Sea's ecosystem changed even further with the introduction of exotic species. Economic collapse of the surrounding socialist republics in the early 1990s resulted in decreased nutrient loading which has allowed the Black Sea ecosystem to start to recover, but under rapidly changing economic and political conditions, future recovery is uncertain. In this study we use a multidisciplinary approach to integrate information from socio-economic and ecological systems to model the effects of future development scenarios on the marine environment of the northwestern Black Sea shelf. The Driver–Pressure–State-Impact-Response framework was used to construct conceptual models, explicitly mapping impacts of socio-economic Drivers on the marine ecosystem. Bayesian belief networks (BBNs), a stochastic modelling technique, were used to quantify these causal relationships, operationalise models and assess the effects of alternative development paths on the Black Sea ecosystem. BBNs use probabilistic dependencies as a common metric, allowing the integration of quantitative and qualitative information. Under the Baseline Scenario, recovery of the Black Sea appears tenuous as the exploitation of environmental resources (agriculture, fishing and shipping) increases with continued economic development of post-Soviet countries. This results in the loss of wetlands through drainage and reclamation. Water transparency decreases as phytoplankton bloom and this deterioration in water quality leads to the degradation of coastal plant communities (Cystoseira, seagrass) and also Phyllophora habitat on the shelf. Decomposition of benthic plants results in hypoxia killing flora and fauna associated with these habitats. Ecological pressure from these factors along with constant levels of fishing activity results in target stocks remaining depleted. Of the four Alternative Scenarios, two show improvements on the Baseline ecosystem condition, with improved waste water treatment and reduced fishing pressure, while the other two show a worsening, due to increased natural resource exploitation leading to rapid reversal of any recent ecosystem recovery. From this we conclude that variations in economic policy have significant consequences for the health of the Black Sea, and ecosystem recovery is directly linked to social–economic choices.
Resumo:
Available methods for measuring the impact of ocean acidification (OA) and leakage from carbon capture and storage (CCS) on marine sedimentary pH profiles are unsuitable for replicated experimental setups. To overcome this issue, a novel optical sensor application is presented, using off-the-shelf optode technology (MOPP). The application is validated using microprofiling, during a CCS leakage experiment, where the impact and recovery from a high CO2 plume was investigated in two types of natural marine sediment. MOPP offered user-friendliness, speed of data acquisition, robustness to sediment type, and large sediment depth range. This ensemble of characteristics overcomes many of the challenges found with other pH measuring methods, in OA and CCS research. The impact varied greatly between sediment types, depending on baseline pH variability and sediment permeability. Sedimentary pH profile recovery was quick, with profiles close to control conditions 24 h after the cessation of the leak. However, variability of pH within the finer sediment was still apparent 4 days into the recovery phase. Habitat characteristics need therefore to be considered, to truly disentangle high CO2 perturbation impacts on benthic systems. Impacts on natural communities depend not only on the pH gradient caused by perturbation, but also on other processes that outlive the perturbation, adding complexity to recovery.