6 resultados para Duluth, Missabe, and Iron Range Railway
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Sex change, or sequential hermaphroditism, occurs in the plant and animal kingdoms and often determines a predominance of the first sex. Our aim was to explore changes in sex ratios within the range of the species studied: Patella vulgata and Patella depressa. The broad-scale survey of sex with size of limpets covered a range of latitudes from Zambujeira do Mar (southern Portugal) to the English Channel. Indirect evidence was found for the occurrence of protandry in P. vulgata populations from the south of England, with females predominating in larger size-classes; cumulative frequency distributions of males and females were different; sex ratios were biased towards males and smallest sizes of males were smaller than the smallest sizes of females. In contrast in Portugal females were found in most size-classes of P. vulgata. In P. depressa populations from the south coast of England and Portugal females were interspersed across most size-classes; size distributions of males and females and size at first maturity of males and females did not differ. P. depressa did, however, show some indications of the possibility of slight protandry occurring in Portugal. The test of sex ratio variation with latitude indicated that P. vulgata sex ratios might be involved in determining the species range limit, particularly at the equatorward limit since the likelihood of being male decreased from the south coast of England to southern Portugal. Thus at the southern range limit, sperm could be in short supply due to scarcity of males contributing to an Allee effect.
Resumo:
Sex change, or sequential hermaphroditism, occurs in the plant and animal kingdoms and often determines a predominance of the first sex. Our aim was to explore changes in sex ratios within the range of the species studied: Patella vulgata and Patella depressa. The broad-scale survey of sex with size of limpets covered a range of latitudes from Zambujeira do Mar (southern Portugal) to the English Channel. Indirect evidence was found for the occurrence of protandry in P. vulgata populations from the south of England, with females predominating in larger size-classes; cumulative frequency distributions of males and females were different; sex ratios were biased towards males and smallest sizes of males were smaller than the smallest sizes of females. In contrast in Portugal females were found in most size-classes of P. vulgata. In P. depressa populations from the south coast of England and Portugal females were interspersed across most size-classes; size distributions of males and females and size at first maturity of males and females did not differ. P. depressa did, however, show some indications of the possibility of slight protandry occurring in Portugal. The test of sex ratio variation with latitude indicated that P. vulgata sex ratios might be involved in determining the species range limit, particularly at the equatorward limit since the likelihood of being male decreased from the south coast of England to southern Portugal. Thus at the southern range limit, sperm could be in short supply due to scarcity of males contributing to an Allee effect.
Resumo:
The relationship between date of first description and size, geographic range and depth of occurrence is investigated for 18 orders of marine holozooplankton (comprising over 4000 species). Results of multiple regression analyses suggest that all attributes are linked, which reflects the complex interplay between them. Partial correlation coefficients suggest that geographic range is the most important predictor of description date, and shows an inverse relationship. By contrast, size is generally a poor indicator of description date, which probably mirrors the size-independent way in which specimens are collected, though there is clearly a positive relationship between both size and depth (for metabolic/trophic reasons), and size and geographic range. There is also a positive relationship between geographic range and depth that probably reflects the near constant nature of the deep-water environment and the wide-ranging currents to be found there. Although we did not explicitly incorporate either abundance or location into models predicting the date of first description, neither should be ignored.
Resumo:
The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts. The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources. The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts. However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services. Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change. The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide). The DY021 cruise is the first of the 2015 Benthic SSB cruises to investigate the 4 main ‘representative’ sites in the Celtic Sea that will represent all the various sediment types found in the whole area, these being Mud, San, Sandy-Mud and Muddy-Sand. The cruise will also carry out complimentary sampling at the Pelagic SSB programme main site called CANDYFLOSS in the central Shelf area in order to better link the Benthic and Pelagic programmes.