4 resultados para Discrete choice analysis

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing anthropogenic pressure in the offshore marine environment highlights the need for improved management and conservation of offshore ecosystems. This study scrutinises the applicability of a discrete choice experiment to value the expected benefits arising from the conservation of an offshore sandbank in UK waters. The valuation scenario refers to the UK part of the Dogger Bank, in the southern North Sea, and is based on real-world management options for fisheries, wind farms and marine protection currently under discussion for the site. It is assessed to what extent the general public perceive and value conservation benefits arising from an offshore marine protected area. The survey reveals support for marine conservation measures despite the general public’s limited prior knowledge of current marine planning. Results further show significant values for an increase in species diversity, the protection of certain charismatic species and a restriction in the spread of invasive species across the site. Implications for policy and management with respect to commercial fishing, wind farm construction and nature conservation are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integrated marine planning, which must take into consideration environmental and social impacts, is being introduced widely in Europe, the USA, Australia and elsewhere. Installation of offshore windfarms creates impacts both on local marine ecosystems and the view of the seascape and is one of multiple activities in the marine area that must be addressed by marine planning. The impacts on people's values (and hence welfare) of changes in ecology and amenity that could arise from the installation of a windfarm in the Irish Sea were assessed using a discrete choice experiment administered through an online survey. The ecological changes investigated were: increased species diversity resulting from artificial reef effects, and the effect of electromagnetic fields from subsea cables on marine life; whilst the amenity change was the visibility of offshore turbines from land. Respondents expressed preferences for ecological improvements but had less clear preferences regarding the height and visibility of the turbines. In particular distance decay effects were observed with respondents further away from the coast being less concerned about visual impact created by offshore turbines. Understanding ecological and amenity impacts and how they are valued by people can support the decisions made within marine planning and licensing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seagrass meadows (Zostera marina) are an important ecosystem in the coastal environment of the Baltic Sea. This study employs a discrete choice experiment to value a set of non-market benefits provided by seagrass meadows in the Gulf of Gdańsk, Poland. The benefits valued in this study are a reduction of filamentous algae in the water and on the beach; access to seagrass meadows for boaters and divers; and improved water clarity. Results show significant willingness to pay for each attribute and differences of value estimates across different groups of survey respondents. It is discussed how to link choice attributes and estimated values with established ecosystem benefit categories in order to facilitate value transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.