2 resultados para Direct method
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Size-fractionated filtration (SFF) is a direct method for estimating pigment concentration in various size classes. It is also common practice to infer the size structure of phytoplankton communities from diagnostic pigments estimated by high-performance liquid chromatography (HPLC). In this paper, the three-component model of Brewin et al. (2010) was fitted to coincident data from HPLC and from SFF collected along Atlantic Meridional Transect cruises. The model accounted for the variability in each data set, but the fitted model parameters differed for the two data sets. Both HPLC and SFF data supported the conceptual framework of the three-component model, which assumes that the chlorophyll concentration in small cells increases to an asymptotic maximum, beyond which further increase in chlorophyll is achieved by the addition of larger celled phytoplankton. The three-component model was extended to a multicomponent model of size structure using observed relationships between model parameters and assuming that the asymptotic concentration that can be reached by cells increased linearly with increase in the upper bound on the cell size. The multicomponent model was verified using independent SFF data for a variety of size fractions and found to perform well (0.628 ≤ r ≤ 0.989) lending support for the underlying assumptions. An advantage of the multicomponent model over the three-component model is that, for the same number of parameters, it can be applied to any size range in a continuous fashion. The multicomponent model provides a useful tool for studying the distribution of phytoplankton size structure at large scales.
Resumo:
Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.