44 resultados para Digestive diseases
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
1. The results presented in this paper show that the exposure of mussels to a sublethal concentration of oil-derived aromatic hydrocarbons (30 μg 1−1) for a period of 4 months significantly decreases the protein level in the digestive gland of the animals (−17%). 2. The activity of the nuclear RNA polymerase I and II is also significantly decreased in the digestive gland of hydrocarbon-exposed mussels (−64% and −18%, respectively). 3. The RNAase(s) activity present in the nuclei from the digestive gland cells increases following the exposure of the mussels to aromatic hydrocarbons. This effect is particularly evident at high ionic strength [200 mM (NH4)2SO4]. 4. The analysis of some characteristics of the nuclear RNAase(s) (most of which is soluble and shows a maximum of activity at pH 4−5) could indicate that part of this hydrolytic enzyme may have a lysosomal origin. 5. This fact appears to be in agreement with the finding that in the mussels exposed for 4 months to aromatic hydrocarbons the lysosomal stability decreases drastically and the total content of lysosomal enzymes is significantly increased (+42.4%).
Resumo:
Structural changes were observed in the digestive tubule epithelial cells of Mytilus edulis following long-term exposure to the water accommodated fraction (WAF) of North Sea crude oil (30 μg · l−1 total oil derived aromatic hydrocarbons). The changes observed involved a reduction in the height of the digestive cells beyond that demonstrated in a normal feeding cycle. In addition there was a loss of the normal synchrony of the digestive cells to a point where nearly all the tubules exhibited an appearance similar to that which is usually termed ‘reconstituting’. These alterations were quantified using an image analysis technique and the mean height of the digestive cells used as an index of digestive function or state. Long-term exposure also induced a radical alteration of the structure of secondary lysosomes within the digestive cells, resulting in the formation of large lysosomes, believed to be autolysosomes. Stereological analyses showed that these lysosomes are reduced in numbers and greatly increased in volume in comparison with controls. There is a concomitant increase in surface area of lysosomes per unit volume of digestive cell compared with control conditions. These alterations are indicative of fundamental changes in secondary lysosomal function involving an autophagic response to oil derived hydrocarbons. which would contribute to the reduction of digestive cell cytoplasm. These cellular alterations are discussed in terms of their use as indices of cell injury, in response to oil.