5 resultados para Differential pulse stripping voltammetry, Fluoroquinolone antibiotics, Chemometrics, Food samples
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 ± 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10–70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52–6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β′Fe3+3(NN)β′Fe3+(NN)3 increased linearly with increasing pH according to log β′Fe3+3(NN)=2.4±0.6×pH+11.9±3.5log β′Fe3+(NN)3=2.4±0.6×pH+11.9±3.5 (salinity = 2.9, T = 20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 ± 4.1 nM equivalent of Fe(III) to 336.2 ± 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 ± 0.2 to 22.8 ± 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.
Resumo:
Differential phenological responses to climate among species are predicted to disrupt trophic interactions, but datasets to evaluate this are scarce. We compared phenological trends for species from 4 levels of a North Sea food web over 24 yr when sea surface temperature (SST) increased significantly. We found little consistency in phenological trends between adjacent trophic levels, no significant relationships with SST, and no significant pairwise correlations between predator and prey phenologies, suggesting that trophic mismatching is occurring. Finer resolution data on timing of peak energy demand (mid-chick-rearing) for 5 seabird species at a major North Sea colony were compared to modelled daily changes in length of 0-group (young of the year) lesser sandeels Ammodytes marinus. The date at which sandeels reached a given threshold length became significantly later during the study. Although the phenology of all the species except shags also became later, these changes were insufficient to keep pace with sandeel length, and thus mean length (and energy value) of 0-group sandeels at mid-chick-rearing showed net declines. The magnitude of declines in energy value varied among the seabirds, being more marked in species showing no phenological response (shag, 4.80 kJ) and in later breeding species feeding on larger sandeels (kittiwake, 2.46 kJ) where, due to the relationship between sandeel length and energy value being non-linear, small reductions in length result in relatively large reductions in energy. However, despite the decline in energy value of 0-group sandeels during chick-rearing, there was no evidence of any adverse effect on breeding success for any of the seabird species. Trophic mismatch appears to be prevalent within the North Sea pelagic food web, suggesting that ecosystem functioning may be disrupted.
Resumo:
In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.