12 resultados para Diet overlap
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Seabirds are effective samplers of the marine environment, and can be used to measure resource partitioning among species and sites via food loads destined for chicks. We examined the composition, overlap, and relationships to changing climate and oceanography of 3,216 food loads from Least, Crested, and Whiskered Auklets (Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska during 1994–2006. Meals comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) that reflect secondary marine productivity, with no difference among Buldir, Kiska, and Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among species (mean Least–Crested Auklet overlap C = 0.68; Least–Whiskered Auklet overlap C = 0.96) and among sites, indicating limited partitioning of prey resources for auklets feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet food loads was related negatively to the summer (June–July–August) North Pacific Gyre Oscillation, while in Whiskered Auklet food loads, this was negatively related to the winter (December–January–February) Pacific Decadal Oscillation, both of which track basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic relationship between the biomass of calanoid copepods in Least Auklet food loads at all three study sites and summer (June–July) SST, with maximal copepod biomass between 3–6°C (r 2 = 0.71). Outside this temperature range, zooplankton becomes less available to auklets through delayed development. Overall, our results suggest that auklets are able to buffer climate-mediated bottom-up forcing of demographic parameters like productivity, as the composition of chick meals has remained constant over the course of our study.
Resumo:
Knowledge on the impact of climate variability in the diet of planktivorous fish is limited by the laborious work involved in stomach content analysis, impractical for large scale studies. Routine measurements of plankton such as the Continuous Plankton Recorder (CPR) survey provide valuable information of the temporal variation of phyto- and zooplankton prey availability for higher trophic levels. Sardines are a world-wide distributed and commercially important planktivorous fish, at the basis of the pelagic marine food web. Being predominantly non-selective filter-feeders, their diets closely correspond to the water plankton species and a significant relationship was recently found between Sardina pilchardus feeding intensity and remotely sensed chlorophyll alpha . Data of sardine stomach prey composition and CPR were obtained during 2003 for the same location off the west coast of Portugal, an area characterised by strong seasonality of plankton abundance and composition, mainly governed by upwelling events. Phyto- and zooplankton prey in sardine stomachs were identified to the lowest possible taxa and their numerical and volumetric abundance was registered, as well as their contribution to the prey carbon content. The seasonal variation of the abundance and composition of sardine diet was then compared to the abundance and composition of the water plankton obtained with the CPR at the same time and for the same area where the fish were collected, in order to evaluate if CPR data can be used to proxy sardine prey availability and diet composition at large temporal scales.
Resumo:
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat ‘hotspots’ of high space use. Movement modelling showed sharks preferred habitats characterised by strong sea-surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge south-west of the Azores. In these main regions, and sub-areas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently ‘tracks’ oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.