15 resultados para Diet of Augsburg (1548)

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seabirds are effective samplers of the marine environment, and can be used to measure resource partitioning among species and sites via food loads destined for chicks. We examined the composition, overlap, and relationships to changing climate and oceanography of 3,216 food loads from Least, Crested, and Whiskered Auklets (Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska during 1994–2006. Meals comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) that reflect secondary marine productivity, with no difference among Buldir, Kiska, and Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among species (mean Least–Crested Auklet overlap C = 0.68; Least–Whiskered Auklet overlap C = 0.96) and among sites, indicating limited partitioning of prey resources for auklets feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet food loads was related negatively to the summer (June–July–August) North Pacific Gyre Oscillation, while in Whiskered Auklet food loads, this was negatively related to the winter (December–January–February) Pacific Decadal Oscillation, both of which track basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic relationship between the biomass of calanoid copepods in Least Auklet food loads at all three study sites and summer (June–July) SST, with maximal copepod biomass between 3–6°C (r 2 = 0.71). Outside this temperature range, zooplankton becomes less available to auklets through delayed development. Overall, our results suggest that auklets are able to buffer climate-mediated bottom-up forcing of demographic parameters like productivity, as the composition of chick meals has remained constant over the course of our study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave-exposed and 2 sheltered rocky shores in each of 2 regions (western Scotland, 55-56°N; and southwest England, 50°N), were analysed in 2 years (n = 30 site-1 yr-1). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwestern sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated, and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests that P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates that the species may play important roles in coupling subtidal and intertidal production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave-exposed and 2 sheltered rocky shores in each of 2 regions (western Scotland, 55-56°N; and southwest England, 50°N), were analysed in 2 years (n = 30 site-1 yr-1). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwestern sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated, and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests that P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates that the species may play important roles in coupling subtidal and intertidal production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from depth integrated and vertically stratified plankton sampling in the northwestern Adriatic Sea were used for comparison of gut contents of larvae of European anchovy Engraulis encrasicolus with composition and concentration of potential prey in the plankton. Sampling was carried out over a grid of stations both before and after a period of increased wind mixing to investigate changes in food availability and larval feeding success. All larvae had empty guts soon after dusk, indicating daytime feeding and rapid gut clearance. With increasing larval length there was a greater percentage of specimens with empty guts, despite suitable food being available in the plankton for these larger larvae; this suggests differential gut evacuation during sampling-possibly related to the degree of gut development. Larval diet was principally the various developmental stages of copepods, especially calanoid and cyclopoid nauplii, which were preferentially selected by larvae, whereas selection was against harpacticoid nauplii. Lamellibranch larvae and Peridinium were generally abundant in the plankton, but were only present in the gut contents in any number when the preferred dietary organisms were present in the plankton at low concentrations. The number of food organisms in the gut contents increased with concentration of the preferred food organisms in the plankton up to a limit of similar to 50 organisms/l. Within the upper 18 m of the water column, there was a reduction in the proportion of larvae with food in their guts with increasing depth, irrespective of the vertical profile of food concentration. Following a period of wind mixing the composition of the plankton changed. This was reflected in the diet of anchovy larvae, which altered in parallel. There was also an overall 41% decrease in concentration of the preferred food particles of larvae in the plankton following the period of wind mixing, but larvae were still able to maintain their food intake. These results show that anchovy larvae can successfully adapt their diet to a changing prey field and suggest that in the conditions observed in the northern Adriatic, quite radical changes in the feeding environment were probably insufficient to affect overall larval mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an effective combination of multivariate testing and ordination analyses, this study compares the extents to which the diets of two co-occurring fish species (Pagrus auratus and Pseudocaranx georgianus) are related to body size (length class), season and region and the rank order importance of those effects. Thus, volumetric dietary compositions were determined for these species on the lower west coast of Australia, where both are abundant, and for P. auratus from the mid west coast and P. georgianus from the south coast. The diet of P. auratus on the lower west coast was strongly related to body size and slightly less to season. With increasing body size, its diet shifted from predominantly ophiuroids to larger prey, such as brachyuran crabs, teleosts, echinoids and ultimately asteroids, probably reflecting a shift from foraging over soft sediments to areas over and around reefs. Seasonal changes on the lower west coast were restricted mainly to small P. auratus, while larger fish underwent seasonal changes further north. Analyses using a common size range of medium to larger P. auratus demonstrated that dietary composition differed more between regions than seasons. The relationships between diet and length class of P. georgianus on both the lower west and south coasts were less pronounced than for P. auratus and seasonal changes were restricted to the south coast, where amphipod consumption increased markedly in summer. The diet of P. georgianus was related far more to region than length class and season, with more small teleosts, small crabs, carideans and littorinids and less amphipods, isopods and small bivalves being ingested on the lower west than south coasts. Although crabs and teleosts were important typifying prey of P. auratus and P. georgianus, when co-occurring, the former predator tended to ingest greater volumes of larger and often less mobile prey. This reflects differences in dentition, jaw morphology and feeding behaviour and reduces the potential for competition for food resources. The results imply that P. auratus and P. georgianus are opportunistic feeders and that the effects of length class, season and region on dietary composition and their rank orders can vary markedly between species and for length class and season between regions for the same species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge on the impact of climate variability in the diet of planktivorous fish is limited by the laborious work involved in stomach content analysis, impractical for large scale studies. Routine measurements of plankton such as the Continuous Plankton Recorder (CPR) survey provide valuable information of the temporal variation of phyto- and zooplankton prey availability for higher trophic levels. Sardines are a world-wide distributed and commercially important planktivorous fish, at the basis of the pelagic marine food web. Being predominantly non-selective filter-feeders, their diets closely correspond to the water plankton species and a significant relationship was recently found between Sardina pilchardus feeding intensity and remotely sensed chlorophyll alpha . Data of sardine stomach prey composition and CPR were obtained during 2003 for the same location off the west coast of Portugal, an area characterised by strong seasonality of plankton abundance and composition, mainly governed by upwelling events. Phyto- and zooplankton prey in sardine stomachs were identified to the lowest possible taxa and their numerical and volumetric abundance was registered, as well as their contribution to the prey carbon content. The seasonal variation of the abundance and composition of sardine diet was then compared to the abundance and composition of the water plankton obtained with the CPR at the same time and for the same area where the fish were collected, in order to evaluate if CPR data can be used to proxy sardine prey availability and diet composition at large temporal scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meroplankton are seasonally important contributors to the zooplankton, particularly at inshore sites, yet their feeding ecology is poorly known relative to holoplankton. While several studies have measured feeding in decapod larvae, few studies have examined the feeding rates of decapod larvae on natural prey assemblages throughout the reproductive season. We conducted 8 feeding experiments with Necora puber, Liocarcinus spp. and Upogebia spp. zoea larvae collected from the L4 monitoring site off Plymouth (50°15.00′N, 4°13.02′W) during spring–summer 2009 and 2010. This period spanned moderate-to-high food availability (0.5–1.6 µg chl-a L−1), but a great range in food composition with small cells <20 µm dominating in 2010. Daily rations averaged 17, 60 and 22 % of body C for the 3 respective decapod species. Clearance rates differed according to prey type, and all 3 decapod genera showed evidence of selection of dinoflagellates. Importantly, small cells including nano- and pico-plankton were ingested, this being demonstrated independently by flow cytometric analysis of the feeding experiments and molecular analysis. PCR-based analysis of the haptophyte portion of the diet revealed ingestion of Isochrysis galbana by decapod larvae in the bottle incubations and Isochrysis galbana and Phaeocystis globosa by decapod larvae collected directly from the field. This study has shown that pico- and nano-sized plankton form an important supplement to the diverse and variable diet of decapod larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In April and May 1991 and between March and June 1992 data regarding the diet of larval S. pilchardus in relation to food availability was gathered. Interpretation of results is compromised by the tendency of sardine larvae to defecate their gut contents during sampling. The most common food organisms in the guts (78-89%) were the developmental stages of copepods (eggs, nauplii and copepodites). Percentage composition of copepod nauplii in the diet decreased with increasing larval size, while copepodites increased. There was no consistent relationship between food availability and feeding success, probably because feeding conditions were generally adequate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many food webs are so complex that it is difficult to distinguish the relationships between predators and their prey. We have therefore developed an approach that produces a food web which clearly demonstrates the strengths of the relationships between the predator guilds of demersal fish and their prey guilds in a coastal ecosystem. Subjecting volumetric dietary data for 35 abundant predators along the lower western Australia coast to cluster analysis and the SIMPROF routine separated the various species x length class combinations into 14 discrete predator guilds. Following nMDS ordination, the sequence of points for these predator guilds represented a 'trophic' hierarchy. This demonstrated that, with increasing body size, several species progressed upwards through this hierarchy, reflecting a marked change in diet, whereas others remained within the same guild. A novel use of cluster analysis and SIMPROF then identified each group of prey that was ingested in a common pattern across the full suite of predator guilds. This produced 12 discrete groups of taxa (prey guilds) that each typically comprised similar ecological/functional prey, which were then also aligned in a hierarchy. The hierarchical arrangements of the predator and prey guilds were plotted against each other to show the percentage contribution of each prey guild to the diet of each predator guild. The resultant shade plot demonstrates quantitatively how food resources are spread among the fish species and revealed that two prey guilds, one containing cephalopods and teleosts and the other small benthic/epibenthic crustaceans and polychaetes, were consumed by all predator guilds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a 25 d Lagrangian study in May and June 1990 in the Northeast Atlantic Ocean, marine snow aggregates were collected using a novel water bottle, and the composition was determined microscopically. The aggregates contained a characteristic signature of a matrix of bacteria, cyanobacteria and autotrophic picoplankton with inter alia inclusions of the tintiniid Dictyocysta elegans and large pennate diatoms. The concentration of bacteria and cyanobacteria was much greater on the aggregates than when free-living by factors of 100 to 6000 and 3000 to 2 500 000, respectively, depending on depth. Various species of crustacean plankton and micronekton were collected, and the faecal pellets produced after capture were examined. These often contained the marine snow signature, indicating that these organisms had been consuming marine snow. In some cases, marine snow material appeared to dominate the diet. This implies a food-chain short cut wherby material, normally too small to be consumed by the mesozooplankton, and considered to constitute the diet of the microplankton can become part of the diet of organisms higher in the food-chain. The micronekton was dominated by the amphipod Themisto compressa, whose pellets also contained the marine snow signature. Shipboard incubation experiments with this species indicated that (1) it does consume marine snow, and (2) its gut-passage time is sufficiently long for material it has eaten in the upper water to be defecated at its day-time depth of several hundred meters. Plankton and micronekton were collected with nets to examine their vertical distribution and diel migration and to put into context the significance of the flux of material in the guts of migrants. “Gut flux” for the T. compressa population was calculated to be up to 2% of the flux measured simultaneously by drifting sediment traps and <5% when all migrants are considered. The in situ abundance and distribution of marine snow aggregates (>0.6 mm) was examined photographically. A sharp concentration peak was usually encountered in the depth range 40 to 80 m which was not associated with peaks of in situ fluorescence or attenuation but was just below or at the base of the upper mixed layer. The feeding behaviour of zooplankton and nekton may influence these concentration gradients to a considerable extent, and hence affect the flux due to passive settling of marine snow aggregates.