66 resultados para Developmental stages

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In zooplankton copepod studies there is often the requirement to be able to identify the six copepodite developmental stages of different species, or to know their body dimensions. However, this information is not available for many species, or is dispersed through the literature. This guide gathers together both original and previously published information on morphology and measurements for the stages of twenty-six common North Atlantic copepod species and tabulates them in a standard format. For each species additional notes useful in their identification are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This identification guide to the copepodite developmental stages of twenty-six North Atlantic copepods has been revised and extended, to include new information, to update the taxonomy and to give additional details on how to determine sex in the later copepodite stages of gymnoplean copepods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results from depth integrated and vertically stratified plankton sampling in the northwestern Adriatic Sea were used for comparison of gut contents of larvae of European anchovy Engraulis encrasicolus with composition and concentration of potential prey in the plankton. Sampling was carried out over a grid of stations both before and after a period of increased wind mixing to investigate changes in food availability and larval feeding success. All larvae had empty guts soon after dusk, indicating daytime feeding and rapid gut clearance. With increasing larval length there was a greater percentage of specimens with empty guts, despite suitable food being available in the plankton for these larger larvae; this suggests differential gut evacuation during sampling-possibly related to the degree of gut development. Larval diet was principally the various developmental stages of copepods, especially calanoid and cyclopoid nauplii, which were preferentially selected by larvae, whereas selection was against harpacticoid nauplii. Lamellibranch larvae and Peridinium were generally abundant in the plankton, but were only present in the gut contents in any number when the preferred dietary organisms were present in the plankton at low concentrations. The number of food organisms in the gut contents increased with concentration of the preferred food organisms in the plankton up to a limit of similar to 50 organisms/l. Within the upper 18 m of the water column, there was a reduction in the proportion of larvae with food in their guts with increasing depth, irrespective of the vertical profile of food concentration. Following a period of wind mixing the composition of the plankton changed. This was reflected in the diet of anchovy larvae, which altered in parallel. There was also an overall 41% decrease in concentration of the preferred food particles of larvae in the plankton following the period of wind mixing, but larvae were still able to maintain their food intake. These results show that anchovy larvae can successfully adapt their diet to a changing prey field and suggest that in the conditions observed in the northern Adriatic, quite radical changes in the feeding environment were probably insufficient to affect overall larval mortality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationships between respiration (R) and body volume (V) for all developmental stages of the harpacticoid copepod Tachidius discipes Giesbrecht have been investigated. The relationships for laboratory-reared animals and animals from the field are significantly different. They are: logR = −0.07 + 1.10 logV for laboratory-reared animals and log R = −0.10 + 0.82 logV for field animals. The effect of temperature on the respiration rate of adult males, over the temperature range 5–20°C, was described by a Q10 of 2.09 ± 0.24. The respiration rate of an adult T. discipes is very similar to that of a similar sized nematode from the same field site and is compared with published data for other harpacticoids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (>500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving GO stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of GO ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrastructural investigations of eggs can be important in helping to understand embryonic development. There are few transmission electron microscope studies of marine arthropod eggs, however, as they have proved difficult to fix and infiltrate with resin. Here, we describe a modification of a standard method that allows the preparation of the quite different eggs of the marine copepod, Acartia tonsa and the lobster, Homarus gammarus, for transmission electron microscopy. By using double fixation and an extended resin infiltration time we obtained good preparations for electron microscopy. We anticipate that these modifications to the standard protocol will be widely applicable and useful for the study of the eggs and early developmental stages of many marine arthropod taxa. Les recherches sur l'ultrastructure des oeufs peuvent être importantes en aidant à comprendre le développement embryonnaire. Il existe cependant peu d'études en microscopie électronique à transmission sur les oeufs d'arthropodes marins, car il est difficile de les fixer et d'y infiltrer de la résine. Dans ce travail, nous décrivons une modification de la méthode standard, qui permet la préparation pour la microscopie électronique à transmission d'oeufs aussi différents que ceux du copépode marin Acartia tonsa et du homard Homarus gammarus. En utilisant une double fixation et un temps plus long d'infiltration de la résine, nous avons obtenu de bonnes préparations pour la microscopie électronique. Nous prévoyons que ces modifications du protocole standard seront largement applicables et utiles pour l'étude des oeufs et des premiers stades de développement de nombreux taxons d'arthropodes marins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000–566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2 ) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2 . In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2 . This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In April and May 1991 and between March and June 1992 data regarding the diet of larval S. pilchardus in relation to food availability was gathered. Interpretation of results is compromised by the tendency of sardine larvae to defecate their gut contents during sampling. The most common food organisms in the guts (78-89%) were the developmental stages of copepods (eggs, nauplii and copepodites). Percentage composition of copepod nauplii in the diet decreased with increasing larval size, while copepodites increased. There was no consistent relationship between food availability and feeding success, probably because feeding conditions were generally adequate.