4 resultados para Dependent Nuclear-dynamics

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.Understanding which environmental factors drive foraging preferences is critical for the development of effective management measures, but resource use patterns may emerge from processes that occur at different spatial and temporal scales. Direct observations of foraging are also especially challenging in marine predators, but passive acoustic techniques provide opportunities to study the behaviour of echolocating species over a range of scales. 2.We used an extensive passive acoustic data set to investigate the distribution and temporal dynamics of foraging in bottlenose dolphins using the Moray Firth (Scotland, UK). Echolocation buzzes were identified with a mixture model of detected echolocation inter-click intervals and used as a proxy of foraging activity. A robust modelling approach accounting for autocorrelation in the data was then used to evaluate which environmental factors were associated with the observed dynamics at two different spatial and temporal scales. 3.At a broad scale, foraging varied seasonally and was also affected by seabed slope and shelf-sea fronts. At a finer scale, we identified variation in seasonal use and local interactions with tidal processes. Foraging was best predicted at a daily scale, accounting for site specificity in the shape of the estimated relationships. 4.This study demonstrates how passive acoustic data can be used to understand foraging ecology in echolocating species and provides a robust analytical procedure for describing spatio-temporal patterns. Associations between foraging and environmental characteristics varied according to spatial and temporal scale, highlighting the need for a multi-scale approach. Our results indicate that dolphins respond to coarser scale temporal dynamics, but have a detailed understanding of finer-scale spatial distribution of resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within models, zooplankton grazing is typically defined as being dependent on total prey concentration, with feeding selectivity expressed only as a function of prey size. This behavior ignores taxonomic preferences shown by the preda- tors and the capacity of some zooplankton to actively select or reject individual prey items from mixtures. We carried out two model experiments comparing impacts of zooplankton displaying passive and active selection, which resulted in contrasting dynamics for the pelagic system. Passive selection by the grazer resulted in a top down control on the prey with a fast turn-over of nutrients. Active selection, on the other hand led to a bottom-up control, with slower nutrient turnover constraining primary production by changing the system toward export of particulate matter. Our results suggest that selective feeding behavior is an important trait, and should be considered alongside size and taxonomy when studying the role of zooplankton impact in the ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery