1 resultado para Data-driven analysis
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (70)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (47)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (20)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (9)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (10)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (4)
- Indian Institute of Science - Bangalore - Índia (24)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (6)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (4)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (111)
- RDBU - Repositório Digital da Biblioteca da Unisinos (11)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (20)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (90)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (13)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (28)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (6)
- University of Michigan (6)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (3)
- University of Washington (3)
- WestminsterResearch - UK (1)
Resumo:
The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.