22 resultados para Data Models
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
Resumo:
Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
Resumo:
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Resumo:
We examined how marine plankton interaction networks, as inferred by multivariate autoregressive (MAR) analysis of time-series, differ based on data collected at a fixed sampling location (L4 station in the Western English Channel) and four similar time-series prepared by averaging Continuous Plankton Recorder (CPR) datapoints in the region surrounding the fixed station. None of the plankton community structures suggested by the MAR models generated from the CPR datasets were well correlated with the MAR model for L4, but of the four CPR models, the one most closely resembling the L4 model was that for the CPR region nearest to L4. We infer that observation error and spatial variation in plankton community dynamics influenced the model performance for the CPR datasets. A modified MAR framework in which observation error and spatial variation are explicitly incorporated could allow the analysis to better handle the diverse time-series data collected in marine environments.
Resumo:
The accuracy of two satellite models of marine primary (PP) and new production (NP) were assessed against 14C and 15N uptake measurements taken during six research cruises in the northern North Atlantic. The wavelength resolving model (WRM) was more accurate than the Vertical General Production Model (VGPM) for computation of both PP and NP. Mean monthly satellite maps of PP and NP for both models were generated from 1997 to 2010 using SeaWiFS data for the Irminger basin and North Atlantic. Intra- and inter-annual variability of the two models was compared in six hydrographic zones. Both models exhibited similar spatio-temporal patterns: PP and NP increased from April to June and decreased by August. Higher values were associated with the East Greenland Current (EGC), Iceland Basin (ICB) and the Reykjanes Ridge (RKR) and lower values occurred in the Central Irminger Current (CIC), North Irminger Current (NIC) and Southern Irminger Current (SIC). The annual PP and NP over the SeaWiFS record was 258 and 82 gC m-2 yr-1 respectively for the VGPM and 190 and 41 gC m-2 yr-1 for the WRM. Average annual cumulative sum in the anomalies of NP for the VGPM were positively correlated with the North Atlantic Oscillation (NAO) in the EGC, CIC and SIC and negatively correlated with the multivariate ENSO index (MEI) in the ICB. By contrast, cumulative sum of the anomalies of NP for the WRM were significantly correlated with NAO only in the EGC and CIC. NP from both VGPM and WRM exhibited significant negative correlations with Arctic Oscillation (AO) in all hydrographic zones. The differences in estimates of PP and NP in these hydrographic zones arise principally from the parameterisation of the euphotic depth and the SST dependence of photo-physiological term in the VGPM, which has a greater sensitivity to variations in temperature than the WRM. In waters of 0 to 5C PP using the VGPM was 43% higher than WRM, from 5 to 10C the VGPM was 29% higher and from 10 to 15C the VGPM was 27% higher.
Resumo:
The purpose of this note is to discuss the role of high frequency data in ecological modelling and to identify some of the data requirements for the further development of ecological models for operational oceanography. There is a pressing requirement for the establishment of data acquisition systems for key ecological variables with a high spatial and temporal coverage. Such a system will facilitate the development of operational models. It is envisaged that both in-situ and remotely sensed measurements will need to combined to achieve this aim.
Resumo:
Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.
Resumo:
Assessing the skill of biogeochemical models to hindcast past variability is challenging, yet vital in order to assess their ability to predict biogeochemical change. However, the validation of decadal variability is limited by the sparsity of consistent, long-term biological datasets. The Phytoplankton Colour Index (PCI) product from the Continuous Plankton Recorder survey, which has been sampling the North Atlantic since 1948, is an example of such a dataset. Converting the PCI to chlorophyll values using SeaWiFS data allows a direct comparison with model output. Here we validate decadal variability in chlorophyll from the GFDL TOPAZ model. The model demonstrates skill at reproducing interannual variability, but cannot simulate the regime shifts evident in the PCI data. Comparison of the model output, data and climate indices highlights under-represented processes that it may be necessary to include in future biogeochemical models in order to accurately simulate decadal variability in ocean ecosystems.
Resumo:
Diatoms exist in almost every aquatic regime; they are responsible for 20% of global carbon fixation and 25% of global primary production, and are regarded as a key food for copepods, which are subsequently consumed by larger predators such as fish and marine mammals. A decreasing abundance and a vulnerability to climatic change in the North Atlantic Ocean have been reported in the literature. In the present work, a data matrix composed of concurrent satellite remote sensing and Continuous Plankton Recorder (CPR) in situ measurements was collated for the same spatial and temporal coverage in the Northeast Atlantic. Artificial neural networks (ANNs) were applied to recognize and learn the complex non-monotonic and non-linear relationships between diatom abundance and spatiotemporal environmental factors. Because of their ability to mimic non-linear systems, ANNs proved far more effective in modelling the diatom distribution in the marine ecosystem. The results of this study reveal that diatoms have a regular seasonal cycle, with their abundance most strongly influenced by sea surface temperature (SST) and light intensity. The models indicate that extreme positive SSTs decrease diatom abundances regardless of other climatic conditions. These results provide information on the ecology of diatoms that may advance our understanding of the potential response of diatoms to climatic change.
Resumo:
The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
Resumo:
Eutrophication is a process resulting from an increase in anthropogenic nutrient inputs from rivers and other sources, the consequences of which can include enhanced algal biomass, changes in plankton community composition and oxygen depletion near the seabed. Within the context of the Marine Strategy Framework Directive, indicators (and associated threshold) have been identified to assess the eutrophication status of an ecosystem. Large databases of observations (in situ) are required to properly assess the eutrophication status. Marine hydrodynamic/ecosystem models provide continuous fields of a wide range of ecosystem characteristics. Using such models in this context could help to overcome the lack of in situ data, and provide a powerful tool for ecosystem-based management and policy makers. Here we demonstrate a methodology that uses a combination of model outputs and in situ data to assess the risk of eutrophication in the coastal domain of the North Sea. The risk of eutrophication is computed for the past and present time as well as for different future scenarios. This allows us to assess both the current risk and its sensitivity to anthropogenic pressure and climate change. Model sensitivity studies suggest that the coastal waters of the North Sea may be more sensitive to anthropogenic rivers loads than climate change in the near future (to 2040).
Resumo:
A key challenge to progressing our understanding of biodiversity’s role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.
Resumo:
Chlorophyll-a satellite products are routinely used in oceanography, providing a synoptic and global view of phytoplankton abundance. However, these products lack information on the community structure of the phytoplankton, which is crucial for ecological modelling and ecosystem studies. To assess the usefulness of existing methods to differentiate phytoplankton functional types (PFT) or phytoplankton size classes from satellite data, in-situ phytoplankton samples collected in the Western Iberian coast, on the North-East Atlantic, were analysed for pigments and absorption spectra. Water samples were collected in five different locations, four of which were located near the shore and another in an open-ocean, seamount region. Three different modelling approaches for deriving phytoplankton size classes were applied to the in situ data. Approaches tested provide phytoplankton size class information based on the input of pigments data (Brewin et al., 2010), absorption spectra data (Ciotti et al., 2002) or both (Uitz et al., 2008). Following Uitz et al. (2008), results revealed high variability in microphytoplankton chlorophyll-specific absorption coefficients, ranging from 0.01 to 0.09 m2 (mg chl)− 1 between 400 and 500 nm. This spectral analysis suggested, in one of the regions, the existence of small cells (< 20 μm) in the fraction of phytoplankton presumed to be microphytoplankton (based on diagnostic pigments). Ciotti et al. (2002) approach yielded the highest differences between modelled and measured absorption spectra for the locations where samples had high variability in community structure and cell size. The Brewin et al. (2010) pigment-based model was adjusted and a set of model coefficients are presented and recommended for future studies in offshore water of the Western Iberian coast.