7 resultados para Damage effects
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
A consideration of some physiological (rates of oxygen consumption, the scope for growth) and cellular (the cytochemical latency of a lysosomal enzyme) processes in bivalve molluscs suggests that animal size and seasonal changes related to the gametogenic cycle are important sources of natural variability. Correcting for size using regression techniques, and limiting measurements to one part of the gametogenic cycle, reduces observed natural variability considerably. Differences between populations are then still apparent, but the results of laboratory experiments with hydrocarbons from crude oil suggest that it should be possible to detect sub-lethal effects due to pollution (the ‘signal’) in the presence of the remaining natural variability (the ‘noise’). Statistical considerations, taken together with results from current studies on Mytilus edulis and Scobicularia plana, indicate that sample sizes of 10–15 individuals should suffice for the detection of possible pollution effects. The physiological effects to be expected in the presence of sub-lethal levels of polluting hydrocarbons are on a scaie that can cause significant ecological damage to a population through a reduction in fecundity and the residual reproductive value of the individuals.
Resumo:
Ocean acidification, caused by increasing atmospheric concentrations of CO2 (refs 1-3), is one of the most critical anthropogenic threats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction(4,5). In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms(6,7). So far, impacts of relevant CO2 concentrations on larval fish have been found in behaviour(8,9) and otolith size(10,11), mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high. commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term (2; months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.
Resumo:
Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2 ) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2 . In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2 . This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.
Resumo:
The dissolution of anthropogenically emitted excess carbon dioxide lowers the pH of the world's ocean water. The larvae of mass spawning marine fishes may be particularly vulnerable to such ocean acidification (OA), yet the generality of earlier results is unclear. Here we show the detrimental effects of OA on the development of a commercially important fish species, the Atlantic herring (Clupea harengus). Larvae were reared at three levels of CO2: today (0.0385 kPa), end of next century (0.183 kPa), and a coastal upwelling scenario (0.426 kPa), under near-natural conditions in large outdoor tanks. Exposure to elevated CO2 levels resulted in stunted growth and development, decreased condition, and severe tissue damage in many organs, with the degree of damage increasing with CO2 concentration. This complements earlier studies of OA on Atlantic cod larvae that revealed similar organ damage but at increased growth rates and no effect on condition.
Resumo:
The effects of short-term (7 d) exposure to environmental hypoxia (2.11 mg O-2 L-1; control: 6.96 mg O-2 L-1) and varying degrees of shell damage (1 or 2, 1 mm diameter holes; control: no holes) on respiration rate, clearance rate, ammonia excretion rate, scope for growth (SFG) and body condition index were investigated in adult blue mussels (Mytilus edulis). There was a significant hypoxia-related reduction in SFG (>6.70 to 0.92J g(-1) h(-1)) primarily due to a reduction in energy acquisition as a result of reduced clearance rates during hypoxia. Shell damage had no significant affect on any of the physiological processes measured or the SFG calculated. Body condition was unaffected by hypoxia or shell damage. In conclusion, minor physical damage to mussels had no effect on physiological energetics but environmental hypoxia compromised growth, respiration and energy acquisition presumably by reducing feeding rates.
Resumo:
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209
Resumo:
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209