6 resultados para DIAMAGNETIC SHIFTS

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical disturbance through wave action is a major determinant of kelp forest structure. The North-east Atlantic storm season of 2013–14 was unusually severe; the south coast of the UK was subjected to 6 of the 12 most intense storms recorded in the past 5 years. Inshore significant wave heights and periods exceeded 7 m and 13 s with two storms classified as ‘1-in-30 year’ events. We examined the impacts of the storm season on kelp canopies at three study sites. Monospecific canopies comprising Laminaria hyperborea were unaffected by storm disturbance. However, at one study site a mixed canopy comprising Laminaria ochroleuca, Saccharina latissima and L. hyperborea was significantly altered by the storms, due to decreased abundances of the former two species. Quantification of freshly severed stipes suggested that the ‘warm water’ kelp L. ochroleuca was more susceptible to storm damage than L. hyperborea. Overall, kelp canopies were highly resistant to storm disturbance because of the low vulnerability of L. hyperborea to intense wave action. However, if climate-driven shifts in kelp species distributions result in more mixed canopies, as predicted, then resistance to storm disturbance may be eroded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical disturbance through wave action is a major determinant of kelp forest structure. The North-east Atlantic storm season of 2013–14 was unusually severe; the south coast of the UK was subjected to 6 of the 12 most intense storms recorded in the past 5 years. Inshore significant wave heights and periods exceeded 7 m and 13 s with two storms classified as ‘1-in-30 year’ events. We examined the impacts of the storm season on kelp canopies at three study sites. Monospecific canopies comprising Laminaria hyperborea were unaffected by storm disturbance. However, at one study site a mixed canopy comprising Laminaria ochroleuca, Saccharina latissima and L. hyperborea was significantly altered by the storms, due to decreased abundances of the former two species. Quantification of freshly severed stipes suggested that the ‘warm water’ kelp L. ochroleuca was more susceptible to storm damage than L. hyperborea. Overall, kelp canopies were highly resistant to storm disturbance because of the low vulnerability of L. hyperborea to intense wave action. However, if climate-driven shifts in kelp species distributions result in more mixed canopies, as predicted, then resistance to storm disturbance may be eroded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.