5 resultados para DATA INTEGRATION

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub-Unit (SSU) rDNA, partial Large Sub-Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1-5.8S-ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU-ITS-LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida-Cuba, (C1) India, and (C2) Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.