38 resultados para Cycle cover
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice-free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from similar to 1.2 to similar to 0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans-Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.
Resumo:
Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic similar to 0.55 Ma, despite oxygenation of Earth's atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N-2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N-2-fixation- driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.