13 resultados para Culture and social change

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last 60 years climate change has altered the distribution and abundance of many seashore species. Below is a summary of the findings of this project. The MarClim project was a four year multi-partner funded project created to investigate the effects of climatic warming on marine biodiversity. In particular the project aimed to use intertidal species, whose abundances had been shown to fluctuate with changes in climatic conditions, as indicator species of likely responses of species not only on rocky shores, but also those found offshore. The project used historic time series data, from in some cases the 1950s onwards, and contemporary data collected as part of the MarClim project (2001-2005), to provide evidence of changes in the abundance, range and population structure of intertidal species and relate these changes to recent rapid climatic warming. In particular quantitative counts of barnacles, limpets and trochids were made as well as semi-quantitative surveys of up to 56 intertidal taxa.Historic and contemporary data informed experiments to understand the mechanisms behind these changes and models to predict future species ranges and abundances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines long term changes in the plankton of the North Atlantic and northwest European shelf seas and discusses the forcing mechanisms behind some observed interannual, decadal and spatial patterns of variability with a focus on climate change. Evidence from the Continuous Plankton Records suggests that the plankton integrates hydrometeorological signals and may be used as a possible index of climate change. Changes evident in the plankton are likely to have important effects on the carrying capacity of fisheries and are of relvance to eutrophication issues and to the assessment of biodiversity. The scale of the changes seen over the past five decades emphasises the importance of maintaining existing, and establishing new, long term and wide scale monitoring programmes of the world's oceans in initiatives such as the Global Ocean Observing System (GOOS).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abundance of wild salmon (Salmo salar) in the North Atlantic has declined markedly since the late 1980s as a result of increased marine mortality that coincided with a marked rise in sea temperature in oceanic foraging areas. There is substantial evidence to show that temperature governs the growth, survival, and maturation of salmon during their marine migrations through either direct or indirect effects. In an earlier study (2003), long-term changes in three trophic levels (salmon, zooplankton, and phytoplankton) were shown to be correlated significantly with sea surface temperature (SST) and northern hemisphere temperature (NHT). A sequence of trophic changes ending with a stepwise decline in the total nominal catch of North Atlantic salmon (regime shift in ∼1986/1987) was superimposed on a trend to a warmer dynamic regime. Here, the earlier study is updated with catch and abundance data to 2010, confirming earlier results and detecting a new abrupt shift in ∼1996/1997. Although correlations between changes in salmon, plankton, and temperature are reinforced, the significance of the correlations is reduced because the temporal autocorrelation of time-series substantially increased due to a monotonic trend in the time-series, probably related to global warming. This effect may complicate future detection of effects of climate change on natural systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some commercial fish species of the northeast Atlantic Ocean have relocated in response to warming. The impact of warming on marine assemblages in the region may already be much greater than appreciated, however, with over 70% of common demersal fish species responding through changes in abundance, rather than range. The northeast Atlantic Ocean is one of the most productive marine ecoregions in the world with a substantial commercial fishery. It is also a region that has undergone particularly rapid warming over the past 50 years, up to four times faster than the global average1. Compared with other marine regions worldwide, the biological response in the northeast Atlantic Ocean has been particularly dramatic, reflecting this rapid warming. Studies have documented biogeographical movements in marine plankton of over 1,000 km northwards2 and advances in the onset of key life-history events by six to eight weeks3. In addition, there has been limited evidence of distributional shifts in some fish species along latitudinal and depth gradients in response to warming4, 5. Writing in Current Biology, Stephen Simpson and colleagues6 present the most comprehensive analysis so far of the impact of warming on commercially important European continental-shelf fish species in the region, and in doing so show that there has been a profound reorganization of local communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.