2 resultados para Cross-system comparison

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The US National Oceanic and Atmospheric Administration (NOAA) Fisheries Continuous Plankton Recorder (CPR) Survey has sampled four routes: Boston–Nova Scotia (1961–present), New York toward Bermuda (1976–present), Narragansett Bay–Mount Hope Bay–Rhode Island Sound (1998–present) and eastward of Chesapeake Bay (1974–1980). NOAA involvement began in 1974 when it assumed responsibility for the existing Boston–Nova Scotia route from what is now the UK's Sir Alister Hardy Foundation for Ocean Science (SAHFOS). Training, equipment and computer software were provided by SAHFOS to ensure continuity for this and standard protocols for any new routes. Data for the first 14 years of this route were provided to NOAA by SAHFOS. Comparison of collection methods; sample processing; and sample identification, staging and counting techniques revealed near-consistency between NOAA and SAHFOS. One departure involved phytoplankton counting standards. This has since been addressed and the data corrected. Within- and between-survey taxonomic and life-stage names and their consistency through time were, and continue to be, an issue. For this, a cross-reference table has been generated that contains the SAHFOS taxonomic code, NOAA taxonomic code, NOAA life-stage code, National Oceanographic Data Center (NODC) taxonomic code, Integrated Taxonomic Information System (ITIS) serial number and authority and consistent use/route. This table is available for review/use by other CPR surveys. Details of the NOAA and SAHFOS comparison and analytical techniques unique to NOAA are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ocean plays an important role in regulating the climate, acting as a sink for carbon dioxide, perturbing the carbonate system and resulting in a slow decrease of seawater pH. Understanding the dynamics of the carbonate system in shelf sea regions is necessary to evaluate the impact of Ocean Acidification (OA) in these societally important ecosystems. Complex hydrodynamic and ecosystem coupled models provide a method of capturing the significant heterogeneity of these areas. However rigorous validation is essential to properly assess the reliability of such models. The coupled model POLCOMS–ERSEM has been implemented in the North Western European shelf with a new parameterization for alkalinity explicitly accounting for riverine inputs and the influence of biological processes. The model has been validated in a like with like comparison with North Sea data from the CANOBA dataset. The model shows good to reasonable agreement for the principal variables, physical (temperature and salinity), biogeochemical (nutrients) and carbonate system (dissolved inorganic carbon and total alkalinity), but simulation of the derived variables, pH and pCO2, are not yet fully satisfactory. This high uncertainty is attributed mostly to riverine forcing and primary production. This study suggests that the model is a useful tool to provide information on Ocean Acidification scenarios, but uncertainty on pH and pCO2 needs to be reduced, particularly when impacts of OA on ecosystem functions are included in the model systems.