5 resultados para Cosmic-ray interactions with the Earth
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Inter-annual variability in the timing of phytoplankton spring bloom and phytoplankton community structure in the central North Atlantic Ocean was quantified using ocean color data and continuous plankton recorder (CPR) data. This variability was related to the North Atlantic Oscillation using correlation analysis and multivariate auto-regression models. The initiation of the spring bloom derived from CPR phytoplankton color index data is similar to that derived from satellite chlorophyll, and exhibits a nominal correlation with the sea surface temperature (SST) and the North Atlantic Oscillation (NAO). The extrapolated spring bloom timing suggested later initiation of blooms in the mid-1980s and earlier initiation of blooms in the 1990s. The climatological phytoplankton community structure in the central North Atlantic is dominated by diatoms, except for a shift in community composition favoring dinoflagellates in August. The ratio of diatoms to total phytoplankton abundance and the ratio of dinoflagellates to total phytoplankton abundance are both closely correlated with the NAO and SST. The extended time series of phytoplankton community structure between 1985 and 2009, deduced from the time series of SST and NAO over the same interval, showed a decadal shift away from diatoms towards dinoflagellates. The linkages between the NAO, and changes in stratification and phytoplankton processes occur over a larger scale than previously observed.
Resumo:
Invasive alien species (IAS) are considered one of the greatest threats to biodiversity, particularly through their interactions with other drivers of change. Horizon scanning, the systematic examination of future potential threats and opportunities, leading to prioritization of IAS threats is seen as an essential component of IAS management. Our aim was to consider IAS that were likely to impact on native biodiversity but were not yet established in the wild in Great Britain. To achieve this, we developed an approach which coupled consensus methods (which have previously been used for collaboratively identifying priorities in other contexts) with rapid risk assessment. The process involved two distinct phases: 1. Preliminary consultation with experts within five groups (plants, terrestrial invertebrates, freshwater invertebrates, vertebrates and marine species) to derive ranked lists of potential IAS. 2. Consensus-building across expert groups to compile and rank the entire list of potential IAS. Five hundred and ninety-one species not native to Great Britain were considered. Ninety-three of these species were agreed to constitute at least a medium risk (based on score and consensus) with respect to them arriving, establishing and posing a threat to native biodiversity. The quagga mussel, Dreissena rostriformis bugensis, received maximum scores for risk of arrival, establishment and impact; following discussions the unanimous consensus was to rank it in the top position. A further 29 species were considered to constitute a high risk and were grouped according to their ranked risk. The remaining 63 species were considered as medium risk, and included in an unranked long list. The information collated through this novel extension of the consensus method for horizon scanning provides evidence for underpinning and prioritizing management both for the species and, perhaps more importantly, their pathways of arrival. Although our study focused on Great Britain, we suggest that the methods adopted are applicable globally.
Resumo:
Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems.
Resumo:
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.
Resumo:
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.