8 resultados para Copper River and Northwestern Railway.

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown experimentally that subinhibitory concentrations of a number of toxic, or other agents that are typically inhibitory (copper, cadmium, tributyl tin fluoride, reduced salinity), may stimulate the growth of colonies of the hydroid Campanularia flexuosa, exhibiting a phenomenon known as hormesis. It is suggested that the stimulation of growth is not due to the specific properties of the different toxicants, but to an adaptive response of the hydroid to the inhibitory effect that they have in common. Growth is regulated by a control mechanism and it is proposed that the increased growth is a consequence of overcorrections to low levels of an inhibitory challenge. Examination of the toxicological literature shows that hormesis is a more common occurrence that is generally supposed, and it is suggested that the explanation given here might apply in other cases of hormesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.